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Ecole Normale Supérieure and PSL Research University, Paris, France

(Dated: March 31, 2017)

Common dynamical properties of business cycle fluctuations are studied in a sample of more than 100 countries
that represent economic regions from all around the world. We apply the methodology of multivariate singular
spectrum analysis (M-SSA) to identify oscillatory modes and to detect whether these modes are shared by
clusters of phase- and frequency-locked oscillators. An extension of the M-SSA approach is introduced to
help analyze structural changes in the cluster configuration of synchronization. With this novel technique,
we are able to identify a common mode of business cycle activity across our sample, and thus point to the
existence of a world business cycle. Superimposed on this mode, we further identify several major events that
have markedly influenced the landscape of world economic activity in the postwar era. These findings raise
therefore questions about assessments of climate change impacts that are based purely on long-term economic
growth models. A key conclusion is the importance of endogenous-dynamics e↵ects at the interface between
natural climate variability and economic fluctuations.

Despite a long tradition of systematically analy-
zing cyclic behavior in economic data,1–3, the na-
ture of aggregate fluctuations is still one of the
most controversial topics in macroeconomics.4,5

Although the emergence of business cycle sy-
nchronization across countries has been widely
acknowledged6–9 — especially in view of the on-
going globalization of economic activity — there
is still no agreement on basic issues like the quan-
tification of comovements. Over the years, eco-
nomic developments, changes in resource availa-
bility, and changes in political systems can result
in more or less drastic changes in the behavior
of economic activity, and therefore change many
aspects of synchronization. Since economic time
series are rather short, highly variable and often
non-stationary, the ability of classical spectral es-
timation methods, like the Fourier transform, to
describe the underlying dynamical behavior is li-
mited. In the present work, we apply multivariate
singular spectrum analysis (M-SSA) to identify
common spectral properties in a sample of ma-
croeconomic time series from over 100 countries
that represent economic regions from all around
the world. An M-SSA extension introduced he-
rein helps us explore the cluster configuration of
synchronization in this sample, as well as identify
several major events that have markedly influen-
ced world economic activity in the postwar era. A
common mode of business cycle activity is found
and it points to the existence of a world business
cycle.

a)Electronic mail: andreasgroth@ucla.edu

I. INTRODUCTION

Over the last quarter-century, multivariate singular
spectrum analysis (M-SSA) has proven its e�ciency and
reliability in the spatio-temporal analysis of large da-
tasets in several fields of the geosciences and of other
disciplines.10 M-SSA provides insight into the unknown
or partially known dynamics of the underlying pheno-
mena by decomposing the delay-coordinate phase space
of a given multivariate time series into a set of data-
adaptive orthogonal components. These components can
be classified essentially into long-term trends, oscillatory
patterns and residual noise, and they allow one to re-
construct a robust “skeleton” of the dynamical system’s
structure.10–12 While this skeleton does not yield, in ge-
neral, the dimension of the system’s attractor,11,13,14 it
can greatly help phase synchronization analysis and pro-
vides considerable insight into the mechanisms of rhythm
adjustment.15

Phase synchronization refers, in general, to an adjus-
tment of rhythms of coupled oscillators that is reflected
in a locking of both their frequencies and phases.16–18

In the presence of spiral behavior, the phase is typically
defined as an angle of rotation with respect to an origin
in phase space.19–21 For low-dimensional systems, this
phase definition can be based on visual inspection; for
high-dimensional systems and in the presence of noise, it
may become more di�cult to formulate a phase definition
that is both useful and robust. In practice, approaches
relying on the definition of an angle usually depend on a
priori knowledge about the analyzed system.

The data-adaptive M-SSA approach, on the other
hand, is able to automatically identify oscillatory mo-
des and detect cluster synchronization in large systems
of coupled oscillators, while no detailed knowledge of in-
dividual subsystems nor a suitable phase definition for
each of them is required.15,22–24

mailto:andreasgroth@ucla.edu
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In the present paper, we introduce an extension of the
M-SSA approach to the analysis of structural changes in
the patterns of synchronization. Aside from bifurcati-
ons through parametric changes in the coupled systems,
or through changes in the coupling strength, structural
changes maybe linked to the phenomenon of intermittent
phase synchronization as well. The latter phenomenon
appears when systems are weakly coupled and global sy-
nchronization is not yet established.25

In the context of economic activity, structural chan-
ges in synchronization patterns can be caused by many
factors that change the way a market or an economy ope-
rates. Over the years, economic developments, changes
in resource availability, or changes in political systems
can result in more or less drastic changes in the patterns
of economic activity.

In Sec. II, we give a brief overview of the economic
background and the synchronization of economic activity.
In Sec. III, we review the main properties of the standard
M-SSA methodology and introduce a complementary M-
SSA algorithm for the detection of structural changes. In
Sec. IV, we show how this complementary M-SSA algo-
rithm can help analyze phase synchronization in a chain
of coupled oscillators, while in Sec. V we study the syn-
chronization of economic activity in the large sample of
macroeconomic indicators selected herein. A summary
and concluding remarks make up Sec. VI, and two ap-
pendices provide further technical details.

II. ECONOMIC BACKGROUND

Macroeconomic time series are dominated, over many
decades, by a long-term upward trend; they also exhibit
smaller but still significant shorter-term fluctuations that
are often associated with business cycles.26 The causes
and characteristics of these cycles have been extensively
studied in modern economic theory, while the debate on
their nature — such as the endogenous vs. exogenous na-
ture of business cycles and their propagation mechanisms
— is still very much alive.5,26–28

A number of approaches have been proposed to se-
parate the shorter-term fluctuations from the long-term
trend.29–31 Since there is, however, no fundamental the-
ory — and hence no generally accepted definition — of
the trend, the resulting residuals have to be analyzed
very critically.

On the other hand, it is widely acknowledged that busi-
ness cycles are multi-national phenomena, showing com-
mon characteristics across countries.32,33 Still, there is
no agreement on basic issues like the quantification of
comovements, the existence of supranational cycles6–9 —
for instance at the European Union or G7 level — and
the determinants of economic synchronization. For this
reason, many theoretical and empirical studies disagree
in their results, due to di↵erent datasets as well as di↵e-
rent methodologies, while considerable disagreement on
the extent and nature of macroeconomic synchronization

persists.
Given that economic time series are rather short,

highly variable and often non-stationary, the ability of
classical spectral estimation methods, like the Fourier
transform, to describe the underlying dynamical behavior
is limited. Only recently, univariate singular spectrum
analysis has been applied to study business cycles of indi-
vidual macroeconomic indicators in a single country,34,35

while M-SSA across indicators has shown to give dee-
per insights into the dynamical properties of US busi-
ness cycles.36 In a joint M-SSA analysis of macroeco-
nomic fluctuations in three European economies and the
US, common cyclical characteristics have been identified,
both across countries and across indicators.37

The present paper extends the study of business cycles
and of the determinants of economic synchronization to
the global scale. In an M-SSA analysis of more than 100
countries, covering economic regions from all around the
world, we investigate common dynamical properties of
business cycle fluctuations and their spectral properties
across countries, regions, and the world.

III. METHODOLOGY

A. Multivariate singular spectrum analysis (M-SSA)

In this subsection, we briefly summarize the main as-
pects of the standard textbook-version of the M-SSA
algorithm.10,38 We rely here on the trajectory-matrix
approach,39,40 which starts by embedding each channel
d of the multivariate time series x = {xd(n) : d =
1, . . . , D; n = 1, . . . , N} — with D channels of length
N — into an M -dimensional trajectory matrix by using
lagged copies,

X

X

Xd =

2

6664

xd(1) xd(2) · · · xd(M)
xd(2) xd(3) · · · xd(M + 1)

...
...

xd(N �M + 1) · · · xd(N)

3

7775
. (1)

Each matrixXXXd hasM columns of reduced lengthN

0 =
N�M+1, and we form the augmented trajectory matrix
by concatenating all the D channels,

X

X

X =
⇥
X

X

X1 X

X

X2 . . . X

X

XD

⇤
, (2)

The full trajectory matrix X

X

X has, therefore, DM columns
of reduced length N

0.
The M-SSA algorithm proceeds by performing a sin-

gular value decomposition (SVD),

X

X

X = ⌘

1/2
P

P

P⌃

⌃

⌃E

E

E

0
, (3)

where the prime E

E

E

0 denotes the transpose of E

E

E. The
normalization factor ⌘ equals max{N 0

, DM}. The ma-
trix ⌃

⌃

⌃ has  non-vanishing diagonal elements, which
are its singular values {sk : k = 1, . . . ,}, where  =



3

min{N 0
, DM}. The two matrices of singular vectors P

P

P

and E

E

E have both rank  and they provide a set of empi-
rical orthogonal functions (EOFs).

The matrix E

E

E of right-singular vectors is composed of
D consecutive segments EEEd of size M ⇥ ,

E

E

E

0 =
⇥
E

E

E

0
1 E

E

E

0
2 . . . E

E

E

0
D

⇤
, (4)

each of which is associated with a channel XXXd in X

X

X. They
are referred to as space-time EOFs (ST-EOFs) and re-
present a set of multivariate data-adaptive filters.

The filter length M is typically chosen to cover more
than one oscillation period, while oscillatory behavior is
captured via so-called oscillatory pairs of two ST-EOFs
in phase quadrature;11,41 i.e they are the analog of sine-
and-cosine pairs in Fourier analysis. To better separate
distinct oscillations for large d, we rely here on varimax
rotation of the ST-EOFs;15,42 see also appendix A for
further algorithmic details.

The matrix P

P

P of left-singular vectors has size N

0 ⇥
. These vectors are referred to as temporal EOFs (T-
EOFs) and reflect the corresponding temporal behavior
of an oscillation, as captured through the filter lens of the
ST-EOFs. This filtering step becomes more apparent via
the equivalent projection of the trajectory matrix onto
the ST-EOFs,

A

A

A = X

X

XE

E

E ⌘ ⌘

1/2
P

P

P⌃

⌃

⌃ , (5)

from which we obtain the principal components (PCs);
i.e. the PCs are proportional to the T-EOFs scaled by
the singular values ⌃⌃⌃.

Dynamical behavior in X

X

X that is associated with a sub-
set K ✓ {1, . . . ,} of EOFs can be reconstructed from
Eq. (3) by

R

R

RK = ⌘

1/2
P

P

P⌃

⌃

⌃K

K

KE

E

E

0
, (6)

with K

K

K a diagonal matrix of size ⇥ , in which the ele-
ments Kkk equal unity if k 2 K, and Kkk = 0 otherwise.
Upon averaging along the skew diagonals of RRRK, i.e. over
elements of the same time instance in Eq. (1), we finally
obtain the reconstructed components (RCs).

B. Structural changes

The projection in Eq. (5) is optimal in the sense that
a maximum amount of variance in X

X

X is captured by a
minimal number of PCs. Optimality, though, is only
given in a total least-mean-square sense, and the PCs
describe overall temporal behavior that is most common
to all input time series.

In the joint M-SSA analysis of extensive atmospheric
and oceanic datasets,43 for example, coupled ocean-
atmosphere modes were most prominent, while separate
M-SSA analyses of the oceanic and atmospheric datasets
unveiled small but significant mismatches in the tempo-
ral behavior of the two fluid media. It was shown that a

gradual decline of interannual variability in the atmosp-
heric forcing was not accompanied by a similar decline of
interannual variability in the ocean response; moreover,
in some regions of the North Atlantic basin, the hypot-
hesis of an ocean response to atmospheric forcing could
be rejected with high confidence. Furthermore, separate
M-SSA analyses over distinct time intervals showed that
the spatio-temporal structure of interannual variability
has changed over time.
Analyzing, however, extensive datasets by separate M-

SSA analyses on subsets of the space-and-time domain
can become quite cumbersome, and a more systema-
tic approach is clearly preferable. In the following sub-
section, we discuss, therefore, a complementary version
of the M-SSA algorithm that is flexible enough to re-
construct oscillatory behavior that undergoes structural
changes in the space–time domain. The M-SSA oscil-
latory modes will then be analyzed in greater detail in
Sec. III E, using a complex EOF analysis to systemati-
cally identify structural changes.

C. Complementary M-SSA algorithm

The projection in Eq. (5) averages over all input chan-
nels, while the T-EOFs of length N

0 provide a total least-
mean-square picture of the temporal behavior. This pro-
perty of M-SSA analysis arises from the decomposition of
X

X

X in (3) into an outer product of a single set of T-EOFs
in P

P

P and the channels’ individual contributions in E

E

E

0.
Hence, in a typical situation, the window lengthM had

to be chosen to cover at least once the longest oscillation
period of interest. In the original M-SSA formulation,
though, it was desirable to use M < N/3 or smaller in
order to be able to identify temporal changes in the am-
plitude of the oscillation.44

A simple restructuring of the trajectory matrix helps
circumvent this limitation. By concatenating the
channel-wise transpose of XXXd,

Y

Y

Y =
⇥
X

X

X

0
1 X

X

X

0
2 . . . X

X

X

0
D

⇤
, (7)

we obtain a new trajectory matrix Y

Y

Y of size M ⇥ DN

0.
The M-SSA algorithm then continues, as before, with the
SVD of the restructured trajectory matrix Y

Y

Y,

Y

Y

Y = ⌘

1/2
U

U

US

S

SV

V

V

0
, (8)

from which we obtain a new set of EOFs. In the follo-
wing, we assume that M < N/2, and therefore M < N

0,
so that UUU and V

V

V have both rank M , and the normaliza-
tion factor ⌘ equals DN

0.
In the single-channel case with D = 1, we have XXX = Y

Y

Y

0,
and the two SVDs in Eqs. (3) and (8) yield the same
results, except that the two sets of EOFs interchange
their respective roles; see also Fig. A1 in Ref. 10.
In the multi-channel case with D � 2, however, this

restructuring in Y

Y

Y has far-reaching e↵ects on the decom-
position of the spatio-temporal variability. The new ma-
trix of left-singular vectors UUU has now size M ⇥ M . To
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understand its role in the decomposition, remember that
U

U

U is also the matrix of eigenvectors of the covariance
matrix C

C

C = ⌘

�1
Y

Y

YY

Y

Y

0 and, following Eq. (7), likewise of

C

C

C = ⌘

�1
PD

d=1XXX
0
dXXXd. Thus,UUU now describes spectral pro-

perties of the covariance structure that are common to
all channels. In contrast to P

P

P, these eigenvectors UUU have
now length M and take over the role of data-adaptive
filters; i.e. the analog of sine and cosine functions.

Note that a similar idea has already been discussed in
the context of Monte Carlo SSA hypothesis testing,23,45

in which the EOF test basis is determined from the eigen-
decomposition of the covariance matrix associated with
the null hypothesis; to wit, the latter is estimated from
the average over the entire set of all surrogate covariance
matrices. Here we likewise average over a set of covari-
ance matrices in C

C

C, and determine a new EOF basis U

U

U

that characterizes the common spectral properties of all
input channels.

Originally introduced for single-channel SSA
analysis,45 the Monte Carlo test for SSA turns out
to be potentially rather misleading in the multi-channel
setting of M-SSA.23 The EOF basis U

U

U describes only
spectral properties. Hence, oscillations of similar periods
but with distinct spatio-temporal features, for example,
could wind up as being subsumed in the same oscillatory
pair of UUU. This would be the case, for instance, if the
test were to associate the same significance level to both
oscillations, although their corresponding eigenvalues
might be quite di↵erent.

In the present paper, however, it is exactly this pro-
perty of the EOF basisUUU that gives su�cient flexibility to
the complementary M-SSA algorithm in associating os-
cillations of similar period, but di↵erent spatio-temporal
patterns. The corresponding spatio-temporal behavior of
the oscillation is captured by the right-singular vectors VVV.

The matrix V

V

V has size DN

0⇥M and it is composed of
D consecutive segments VVVd of size N

0 ⇥M ,

V

V

V

0 =
⇥
V

V

V

0
1 V

V

V

0
2 . . . V

V

V

0
D

⇤
, (9)

each of which is associated with a channel XXXd in Y

Y

Y. In
contrast to the single set of T-EOFs in matrix P

P

P that
results from the SVD of Eq. (3), we have now D separate
sets of T-EOFs in Eq. (8). The separability of distinct
oscillations is further improved by a subsequent varimax
rotation of VVV, as in the standard M-SSA algorithm; see
appendix A for further algorithmic details.

Dynamical behavior in Y

Y

Y that is associated with a sub-
set of EOFs can be reconstructed, in a manner analogous
to Eq. (6), from

R

R

RK = ⌘

1/2
U

U

US

S

SK

K

KV

V

V

0
, (10)

with R

R

R of size M ⇥DN

0, while averaging along the skew
diagonals of RRR — i.e., over elements that occur at the
same time in Eq. (7) — yields the RCs of x.

Table I compares the properties of the standard M-SSA
algorithm in Eq. (3) with those of the complementary M-
SSA algorithm in Eq. (8). The main di↵erences in the

Table I. Properties of the standard M-SSA algorithm in
Eq. (3) vs. the complementary M-SSA algorithm in Eq. (8).

Standard Complementary
Size of M-SSA M-SSA
Trajectory matrix XXX : N

0 ⇥DM YYY : M ⇥DN

0

Temporal EOF PPP : N

0 ⇥  VVV : DN

0 ⇥ 

Filter EOF EEE : DM ⇥  UUU : M ⇥ 

Singular values ⌃⌃⌃ : ⇥  SSS : ⇥ 

Rank  : min{N 0
, DM}  : M

decomposition of the trajectory matrix between the two
versions of the M-SSA algorithm can be summarized as
follows:

1. The standard M-SSA algorithm captures temporal
behavior in univariate T-EOFs that are common
to all input channels, while the complementary M-
SSA algorithm captures channel-wise temporal be-
havior in multivariate T-EOFs.

2. The standard M-SSA algorithm projects the multi-
channel time series onto a multivariate spectral fil-
ter of ST-EOFs, while the complementary M-SSA
algorithm projects all time series onto a univariate
spectral filter.

D. Example of harmonic oscillations

To better understand the di↵erences between the two
versions of the M-SSA algorithm, we consider next the
simple example of spatio-temporal harmonic oscillations.
While the oscillation period is fixed, amplitudes and pha-
ses can vary in space and time.
Figure 1(a) shows the observed input signal, while the

noise-free reference signal is shown in Fig. 1(b). The re-
ference signal is composed of three di↵erent signals with
varying spatio-temporal behavior, and which are shown
in Figs. 1(c–e). The superposition of the three signals is
meant to reflect structural changes in time: it is these
changes we try to identify in the noise-contaminated sig-
nal in Fig. 1(a). The superimposed spatio-temporally
correlated red noise is generated from AR(1) processes
with parameter � = 0.9 and the lag-0 covariance matrix
W

W

Wij = 0.8|i�j|.
To cover at least one oscillation period, we set the win-

dow length to M = 30. In both M-SSA analyses, the
standard and the complementary one, the leading pair of
EOFs 1-2 captures oscillatory behavior of period T = 20,
with the corresponding spatio-temporal reconstructions
shown in Figs. 2(a) and 2(b), respectively. It turns out,
though, that only the complementary M-SSA algorithm
in Fig. 2(b) is able to capture the time-varying spatio-
temporal structure in Fig. 1(b). The reconstruction of
the standard M-SSA algorithm in Fig. 2(a), on the other
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Figure 1. Spatio-temporal oscillations in the presence
of strong correlated noise. (a) Observed pattern; and (b)
noise-free reference pattern with D = 50 channels of length
N = 300. The reference pattern is composed of three dif-
ferent spatio-temporal oscillations in panels (c–e), with the
oscillation period T = 20 in all three patterns. Superimposed
on the reference signal is spatio-temporally correlated noise,
with the signal-to-noise ratio set to 1.5.

hand, gives only a much fuzzier picture of the spatio-
temporal structure of the oscillation, while many struc-
tural details are completely missed.

Only the central part 20 . d . 40 of the signal
is correctly reconstructed by the standard M-SSA in
Fig. 2(a), while two further oscillatory pairs are neces-
sary to reconstruct the two adjacent parts 1  d . 20
and 40 . d  50, respectively (not shown). This de-
composition into spatially distinct patterns, though, is
characteristic for the varimax rotation of the ST-EOFs
in E

E

E, cf. Eqs. (3)-(4) and appendix A; it is less helpful,
however, in identifying structural changes in the time
domain.

In the complementary M-SSA algorithm, all input
channels are projected onto the same set of univariate
filters in U

U

U. Since the oscillation period is identical
in the three oscillatory patterns of Figs. 1(c–e), a sin-
gle oscillatory pair in U

U

U su�ces in Fig. 2(b) to recon-
struct the complex spatio-temporal structure in Fig. 1(b).
Despite the algorithm’s excellence in identifying the com-
plex spatio-temporal structure of the oscillation in the
presence of strong correlated noise, it still lacks more spe-
cific information about the existence of structurally dis-
tinct patterns. In the present example, visual inspection
can already provide useful information in this direction,
but a more systematic approach is necessary for high-

(a) Standard M-SSA EOFs 1-2
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(b) Complementary M-SSA EOFs 1-2
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Figure 2. Reconstruction of spatio-temporal oscillations with
the leading oscillatory pair RCs 1-2 of (a) the standard M-
SSA algorithm and (b) the complementary M-SSA algorithm.
The window length M = 30 and the leading 10 EOFs varimax
rotated. Panels (c–e) show partial RCs from a reconstruction
with the three leading EOFs of a subsequent complex EOF
analysis of M-SSA EOFs 1-2 of panel (b). The complex EOF
analysis in T-mode, with the 10 leading complex T-EOFs va-
rimax rotated.

dimensional systems, as presented in the following sub-
section.

E. Complex EOF analysis

For a more systematic decomposition of the spatio-
temporal structure of the oscillation, recall that the com-
plementary M-SSA algorithm in Eq. (8) captures tempo-
ral behavior in the multivariate T-EOFs of matrix V

V

V, cf.
Eq. (9). Suppose we have identified oscillatory behavior
in an oscillatory pair of two T-EOFs, i.e. vp and vq, the
p-th and q-th columns of VVV, respectively.
Upon varimax rotation of VVV, cf. appendix A, the two

T-EOFs are in phase quadrature and will therefore pro-
vide an expansion of the oscillation in the complex plane,

z = vp + ivq . (11)

According to Eq. (9), the complex-valued column vector
z of length DN

0 is likewise composed of D consecutive
segments zd of lengthN

0, each of which is associated with
a channel VVVd in V

V

V.
Concatenating the channel-wise segments zd,

Z

Z

Z =
⇥
z1 z2 . . . zD

⇤
, (12)
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will finally provide the complex input signal ZZZ of size
N

0 ⇥D for our complex EOF analysis,

Z

Z

Z = U

U

UcSSScVVV
0
c . (13)

The SVD in Eq. (13) provides a factorization of Z

Z

Z

into two unitary matrices U

U

Uc and V

V

Vc, both of rank
 = min{N 0

, D}, and a diagonal matrix S

S

Sc of real
numbers.46,47 The left-singular vectors U

U

Uc describe the
temporal behavior of the oscillations and we will refer to
them as complex T-EOFs. The right-singular vectors VVVc

describe the corresponding phase and amplitude relati-
ons for each of the input channels and we will refer to
them as complex S-EOFs.

Complex EOF analysis is known to be useful in iden-
tifying propagating and standing waves.48 By analogy
with the varimax rotation of ST-EOFs in M-SSA, cf.
Sec. IIID, we seek to simplify the interpretation of the
complex EOFs by a varimax rotation. In contrast to the
M-SSA rotation, which attempts to simplify the spatial
structure of the oscillations, there are two possibilities
for achieving simpler oscillatory structures by varimax
rotation in complex EOF analysis.49

In the so-called S-mode,50 a simple structure rotation
is applied to the complex S-EOFs and will result in spati-
ally distinct clusters, same as in the ST-EOF rotation for
the M-SSA algorithm. In the alternative T-mode, a rota-
tion is applied to the complex T-EOFs and will result in
distinct clusters in time. In the geosciences, the S-mode
is more frequently used, although the T-mode is not un-
common either.51,52 Later on, we will see that these two
modes provide complementary information about the sy-
stem under study.

To reconstruct dynamical behavior in the original in-
put time series x from the two-stage decomposition of
Eqs. (8) and (13), we first reconstruct the dynamical be-
havior ZZZk that is associated with the k-th complex EOF,

Z

Z

Zk = U

U

UcSSScKKKV

V

V

0
c ; (14)

here K

K

K is a diagonal matrix of rank , in which the k-
th diagonal element equals unity and the other diagonal
elements are set to zero. Following Eq. (11), the real and
imaginary parts of ZZZk are associated with T-EOFs vp

and vq, respectively. That is, by replacing the T-EOFs
vp and vq in Eq. (10) by their counterparts in Z

Z

Zk, we
obtain, again upon diagonal averaging, the corresponding
partial RCs.

Note that
P

k=1ZZZk yields a complete reconstruction of
Z

Z

Z, i.e. of T-EOFs vp and vq, and the sum of all partial
RCs from the subsequent complex EOF analysis likewise
yields the original RCs from the M-SSA analysis.

In the above example of harmonic oscillations, we have
already seen that the time-varying spatio-temporal struc-
ture in Fig. 1(b) is well captured by RCs 1-2 of the com-
plementary M-SSA algorithm in Fig. 2(b). Figures 2(c–e)
show the resulting partial RCs as derived from a recon-
struction with the three leading EOFs of a subsequent
complex EOF analysis in the T-mode. In this analysis,

the complex T-EOFs are varimax rotated, while the par-
tial RCs give the desired reconstruction of the three refe-
rence patterns in Figs. 1(c–e). A complex EOF analysis
in the alternative S-mode (not shown) yields only spa-
tially distinct patterns, similar to the standard M-SSA
algorithm in Fig. 2(a).

F. Qualitative comparison with other methods

In this paper, we discuss a two-stage approach that
combines the M-SSA analysis with a subsequent com-
plex EOF analysis. Namely, in the first step, the M-SSA
algorithm identifies a spatio-temporal oscillation and ex-
pands it into the complex plane, while the complex EOF
analysis then decomposes this spatio-temporal oscillation
into structurally distinct patterns.
Complex EOF analysis is often used to recognize wave

patterns, and it is commonly based upon a complex ex-
pansion of the input signal via a Hilbert transform.46–48

Unless some bandpass filtering is performed beforehand,
no particular time scale is attached to a pattern obtained
in this way. The Hilbert transform approach is, moreo-
ver, subject to problems arising from end e↵ects, which
render this approach useless in the presence of strong
trends. M-SSA, on the other hand, discriminates between
di↵erent frequency peaks in a natural, data-adaptive way,
and provides a robust decomposition into trends and dif-
ferent oscillatory patterns.
In the present work, we focus on structural changes in

single oscillatory patterns that are embedded in possibly
high-dimensional systems. To detect such changes, se-
veral authors have proposed implementing change-point
detection algorithms that are limited, though, to scalar
time series and rely on sequential application of SSA.53–56

In the context of M-SSA forecasting, Hassani and
Mahmoudvand 57 have concatenated the channel-wise
trajectory matrix X

X

Xd into a full trajectory matrix X

X

X as
well as YYY, cf. Eqs. (2) and (7), respectively. These aut-
hors concluded that the forecasting performance on X

X

X,
their VMSSA algorithm, is generally better than on Y

Y

Y,
their HMSSA algorithm. This is not surprising, insofar
as the VMSSA algorithm uses cross-channel information,
and the forecasting procedure can benefit from extra in-
formation when the distinct channels share common fre-
quencies. In the present work, we rely on a subsequent
varimax rotation in both cases, which improves the iden-
tification of common oscillatory behavior and reduces the
risk of spurious correlations.58

IV. SYNCHRONIZATION OF COUPLED SYSTEMS

To illustrate the insight provided by the standard and
the complementary M-SSA algorithm into phase synchro-
nization, we consider a chain of J = 20 di↵usively cou-
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pled Rosenzweig-MacArthur models,59

ẋj = G(xj)� yj F (xj) + c (xj+1 � 2xj + xj�1) ,
ẏj = " yj G(xj)� µ yj .

(15)
The position in the chain is given by j = 1, . . . , J and
we assume free boundary conditions x0(n) = x1(n) and
xJ+1(n) = xJ(n). Each model in the chain is an extended
version of a Lotka-Volterra predator–prey model, with a
density-dependent logistic growth G(x) = rx(1� xK

�1)
and a Holling-type60 functional response F (x) = ↵x(1 +
↵hx)�1.

The Lotka-Volterra equations have long been used
in economic theory as well.61,62 In a highly simplified
way, the model captures adjustment delays of the socio-
economic system — for example between production and
demand or capital and labor — and thus bridges the
theories of balanced growth and of endogenous business
cycles.28,63

With the parameters set to r = 0.5, K = 400, h = 0.3,
" = 0.3, and µ = 0.4, the system undergoes a Hopf bifur-
cation at ↵ & 0.0194, after which a limit cycle solution
arises and is stable. The amplitude and period of the li-
mit cycle depend on ↵ and increase both with increasing
↵. In our simulation, we choose ↵ = ↵j to vary linearly
in the interval [0.0195, 0.026]. The individual systems
are coupled via their x–component, with c � 0 the cou-
pling strength. The solution is sampled at time intervals
�t = 1 to obtain a time series of length N = 5000.

In a similar experiment on a chain of coupled chaotic
Rössler systems, the standard M-SSA algorithm has al-
ready proven to provide insightful information about the
formation of synchronization clusters.15,24 In the present
case of coupled Rosenzweig-MacArthur oscillators, syn-
chronization of the distinct limit cycles manifests itself
likewise via a clustering of the oscillators. As the cou-
pling strength c increases, the number of clusters decre-
ases: this is reflected by a decreasing number of singular
values in the standard M-SSA algorithm in Fig. 3(a).

In the complementary M-SSA algorithm, the leading
oscillatory pair captures always more than 95% of the
total variance, irrespective of the coupling strength (not
shown); it is this pair that is then analyzed in a subse-
quent complex EOF analysis. In the S-mode analysis of
Fig. 3(b), it is not surprising that the picture resembles
qualitatively very well the picture of the standard M-SSA
algorithm in Fig. 3(a), since both algorithms seek to sim-
plify the spatial structure. The essential di↵erence is in
the representation of oscillatory behavior: an oscillatory
pair of two lines in Fig. 3(a) corresponds to a single line
of a complex oscillation in Fig. 3(b).

In the T-mode in Fig. 3(c), we likewise observe a cas-
cade of vanishing singular values as the coupling strength
increases, although the behavior at successive bifurcation
points is somewhat less abrupt. To understand the small
but visible di↵erences between the results in the S- and
T-mode in Figs. 3(b) and 3(c), respectively, we compare
next the underlying spatio-temporal oscillations in grea-
ter detail.
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Figure 3. Synchronization for a chain of J = 20 cou-
pled Lotka-Volterra oscillators (15). Spectrum of singular
values from (a) the standard M-SSA algorithm, and (b,c)
from the complementary M-SSA algorithm, with a subsequent
complex-EOF analysis of ST-EOFs 1-2; here the latter ana-
lysis uses (b) the S-mode, and (c) the T-mode. The M-SSA
window length is M = 30 and the 20 leading EOFs are vari-
max rotated.

Figure 4(a) shows a segment of the observed spatio-
temporal behavior at coupling strength c = 0.1. At this
coupling strength, the regime of global synchronization
has not yet been reached, and the collective oscillation of
the elements in the chain is interrupted by phase slips at
the border that separates neighboring clusters.

In S-mode, the spectrum of singular values in Fig. 3(b)
indicates two significant clusters at c = 0.1, while the
corresponding partial RCs associated with the complex
EOFs 1 and 2 in Figs. 4(b) and 4(c), respectively, show
a clear separation into two spatially distinct oscillatory
patterns. The combination of the two partial RCs in
Fig. 4(d), on the other hand, captures most of the de-
tails of the observed spatio-temporal pattern in Fig. 4(a).
Note that a similar two-cluster configuration is also
found with the standard M-SSA algorithm at c = 0.1
in Fig. 3(a), while the corresponding RCs show patterns
similar to that of the S-mode in Figs. 4(b–d) (not shown).

In T-mode, the spectrum of singular values in Fig. 3(c)
likewise indicates two significant clusters at c = 0.1, but
the corresponding partial RCs from a reconstruction with
the complex EOFs 1 and 2 in Figs. 5(b) and 5(c), re-
spectively, show a di↵erent picture. The temporal clus-
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Figure 4. Chain of purely periodic oscillators (15) at coupling
strength c = 0.1. (a) Observed spatio-temporal oscillation of
the x-components; and ( b–d) partial RCs from a complex
EOF analysis in S-mode. Parameter values and details given
in Fig. 3.
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Figure 5. Same as Fig. 4, but with partial RCs from a
complex EOF analysis in T-mode.

tering in the T-mode now separates between epochs of
global synchronization in Fig. 5(a), interrupted by epo-
chs of antiphase behavior in Fig. 5(b). As in the S-mode,
the combination of the two patterns in the T-mode cap-
tures most of the details of the observed spatio-temporal
pattern, cf. Fig. 5(c) As the coupling strength incre-
ases further, epochs of global synchronization become
more frequent, while the corresponding singular value in
Fig. 3(c) gradually increases before the onset of complete
synchronization at c & 0.23.

V. SYNCHRONIZATION OF ECONOMIC ACTIVITY

In this study, we analyze macroeconomic data from
the World Development Indicators (WDI) database of
the World Bank.64 The annual datasets provides a com-
prehensive collection of global development data, from
which we select five variables: Gross domestic product
(GDP) at market prices, gross fixed capital formation
(GDI, formerly gross domestic fixed investment), final
consumption expenditure (CON), exports (EXP), and
imports (IMP) of goods and services. All variables are
in constant 2010 US$.
We restrict ourself to the interval 1970–2015 of length

N = 46 years, for which we have 104 economies with no
missing values from at least one of the five macroecono-
mic indicators above. In this subset of the WDI dataset,
each of these 104 economies is thus represented by at least
one variable out of the five selected. The total number
D = 336 of input time series for our analysis lies, the-
rewith, between the (number of economies = 104) ⇥ (5
variables) = 520 and half this number. Additional es-
timates for the remaining countries and variables with
missing values in the WDI dataset complete the global
picture, as described in appendix B.

A. Complementary M-SSA analysis

In our analysis of the macroeconomic data, we have
chosen to separate the shorter-term fluctuations from the
long-term trend in a single M-SSA analysis. In contrast
to the common idea of first detrending the data,29–31 the
single-step M-SSA analysis provides us with a more con-
sistent separation into a permanent trend component and
transitory fluctuations that are orthogonal to it.34

Figure 6 shows the GDP time series of ten major eco-
nomies, together with their reconstruction by the leading
pair of RCs 1-2. This leading pair captures about 99% of
the total variance, and it is associated with the growth
trend component of the dataset.
The dominant character of this growth trend compo-

nent can lead to a strong influence on neighboring low-
frequency bands, due to leakage e↵ects.65 For this re-
ason, the dataset is often detrended first, prior to any
spectral analysis.36,37 In the present analysis, though, a
careful varimax rotation of the M-SSA EOFs helps re-
ducing mixture e↵ects and improves the separation of
nearby frequencies.58

Figure 7 shows the residuals after subtracting the trend
component given by RCs 1-2 from the raw data. The
success of a reasonable separation between the growth
trend component and transitory fluctuations is clearly
visible in the GDP trend residuals of the US economy.
In this case, the downward fluctuations align very well
with the o�cial NBER-defined US recessions,66 while the
stylized fact of an asymmetric business cycle — with the
recession phase much shorter than the expansion phase
— becomes strikingly apparent.67,68
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Figure 6. Annual GDP data of ten major economies from 1970 to 2015 (red) and estimated trend component (black) captured
by RCs 1-2 from a complementary M-SSA analysis of the WDI dataset. The window length is M = 12 years and all 12 EOFs
are varimax rotated. The vertical bars in all panels indicate NBER-defined US recessions. The trend component captures 99%
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Figure 7. GDP trend residuals (red) and reconstruction with RCs 3-4 (black) from the M-SSA analysis in Fig. 6. This RC
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the legend of the corresponding panel (in %). Note the di↵erent scales on the y-axis.

The ups and downs in the trend residuals of the other
countries in Fig. 7 are not aligned that well with the ups
and downs in the US trend residuals. This raises there-
fore the question of whether the transitory fluctuations
of various countries are synchronized and, if so, whether
the cluster configuration changes over time.

Figure 7 furthermore shows the reconstruction of the
trend residuals with the leading oscillatory pair RCs 3-4,
whose broad periodicity is of 7–11 yr. The cyclic charac-
ter of successive expansions and recessions is very well
reproduced in many countries, while 73% of the residu-
als’ variance is captured by this oscillatory pair.

Beside this main oscillatory mode, we observe two ot-
her oscillatory modes of 5–6-yr and 3–4-yr period in RCs
5-6 and RCs 7-8, respectively. These two modes cap-
ture 18% and 5% of the trend residuals’ total variance,
respectively, and represent not just simply harmonics of
the main oscillatory mode, as we would expect from a

Fourier decomposition of asymmetric cycles.
The second oscillatory mode of 5–6-yr period is shown

in Fig. 8, together with a reconstruction of the trend
residuals with a combination of the two leading oscilla-
tory modes, given by RCs 3-4 and 5-6. It turns out that
the combination of the two modes provides a remarkably
good fit to the apparently quite erratic behavior of the
trend residuals.
In the US GDP, the RCs 5-6 are characterized by a fai-

rly constant amplitude throughout the whole observation
interval. Groth et al. 36 have already shown that an os-
cillatory mode of similar period plays an important role
during US recessions, when the trajectory of the dataset
stays closer to a suspected limit cycle, like the one in the
non-equilibrium dynamic model (NEDyM) of Hallegatte
et al. 63 or in other endogenous business cycle models.28

The remarkably persistent character of RCs 5-6 in the
US economy is in contrast to a more transient behavior
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Figure 8. Same as Fig. 7 but for a reconstruction with RCs 5-6 (black), as well as the sum of RCs 3-4 and RCs 5-6 (blue). The
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in several of the European countries in Fig. 8. In the
latter, RCs 5-6 have a particularly high amplitude du-
ring the Great Recession of 2008–2009 and also indicate
a smaller second recession afterwards. This behavior has
often been called a double-dip recession in many Euro-
pean countries,69. An analysis of the phase relations in
RCs 5-6 suggests a leading role of the US in generating
this mode, i.e. the US economy leads the European coun-
tries by 3–12 month (not shown).

To understand general characteristics of business cycle
synchronization, we focus in the next subsection on the
main oscillatory mode with a near-periodicity of 7–11 yr,
while more detailed analyses of the other modes are left
for future studies.

Note that oscillatory modes of similar periodicity have
already been identified in previous M-SSA analyses of
the US business cycle36 and of a subset of European
countries.37 These studies, however, relied on a prior de-
trending of the raw data, which is subject to the criticism
of business cycles being merely a spurious by-product of
the detrending procedure.70 Objective significance tests,
on the other hand, have demonstrated that these modes
cannot be generated by random shocks alone.36,37. The
consistency in oscillation period between M-SSA analy-
ses of detrended data and raw data is an even stronger
indicator for the existence of shared, universal properties
of the underlying dynamics.

B. Subsequent complex EOF analysis

In the reconstruction of the trend residuals with RCs
3-4, a fairly complex structure of phase-and-amplitude
modulations becomes apparent in Fig. 7. To simplify the
interpretation, we continue with a subsequent complex
EOF analysis of this main oscillatory mode, in which we
try to identify structural changes over time.

Figure 9 shows the corresponding temporal patterns of

the four leading complex EOFs, cf. appendix B. We have
chosen the T-mode version of the analysis, in which we
seek to identify distinct clusters in time via a varimax
rotation of the complex T-EOFs. It turns out that we
are indeed able to identify several oscillatory modes that
characterize distinct time intervals. This cluster identifi-
cation will be discussed in greater detail in the following
subsections.
Figure 10 displays rescaled versions of the GDP trend

residuals and their corresponding RCs 3-4 for the ten
major economies from Fig. 7. In addition, the partial
RCs from a reconstruction with the complex EOFs 1–4
are shown in Figs. 10(b–e).

1. Complex EOF 1

The leading oscillatory mode in complex EOF 1 rea-
ches a maximum of the amplitude during the Great Re-
cession in 2008-2009, and it remains high until the end
of the time interval, cf. Fig. 9(a). The persistently high
amplitude after the recession is consistent with the ob-
servation that the world economy is still struggling with
post-crisis adjustments.69 In terms of overall impact, the
leading complex EOF 1 captures more variance than all
the remaining complex EOFs together. This dominance
is consistent with this Great Recession being the most
severe global one during the postwar period.71

The corresponding partial RCs in Fig. 10(b) provide a
good approximation of the trend residuals in many coun-
tries during this time interval, a fact that emphasizes the
global character of this crisis. For the US economy, the
partial RCs provide a good approximation of the GDP
trend residuals throughout the full observation interval,
while the ups and downs appear to be in phase with the
NBER-defined recessions. This agreement suggests that
the US economy plays a significant role in the generation
of this recurrent pattern elsewhere, too. For the other
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Figure 9. Complex EOF analysis in T-mode of ST-EOFs
3-4 that corresponds to RCs 3-4 in Fig. 7. Shown are
the complex-valued temporal patterns that characterize the
spatio-temporal oscillations in the partial RCs, based on a re-
construction with the four leading complex EOFs. The real
and imaginary parts are plotted in blue and red, respectively,
while the envelope is plotted in green. The variance captured
by each mode is given in the legend of each panel (in %).

countries, though, we get a more complicated picture, in
which the phase and the amplitude vary from country to
country.

To get a better picture of the global pattern, we next
plot in Fig. 11 the corresponding phase and amplitude
relations for each of the countries on a world map. For
each country, the relations among the variables’ phase
and amplitude are shown in a polar coordinate system,
with the two-letter country code at the origin.

For the 104 economies and those variables with no mis-
sing values, the phase and amplitude can be directly de-
rived from the complex S-EOFs in V

V

Vc; they are indicated
by opaque pointers. The map also shows estimates of
the phase and amplitude relations for time series with
missing data; these are indicated by transparent poin-
ters. Details of the estimation procedure can be found in
appendix B.

To guide the reading of the complex world map of
phase and amplitude relations, we have furthermore cho-
sen to rescale the land area of each country in proportion
to its importance in the oscillatory mode, i.e. propor-
tional to the maximum amplitude of its variables. To
calculate this so-called cartogram, we have used the Sca-
peToad toolkit,72; this toolkit applies a di↵usion-based
algorithm to find a good balance between the correct size
of the land area and low distortion of map regions.73

In Fig. 11, the prominent role that the US economy
plays in the generation of this 7–11-yr oscillatory mode
becomes immediately apparent in several of its aspects.
In terms of amplitude, we see that the US economy con-
tributes a large part to the variance of the mode. This
part is about the same order of magnitude as all the Eu-
ropean Union countries taken together, and also compa-
rable to the role of China, Japan and Russia taken toget-
her. In terms of phase, we see that almost all countries
and their variables lag behind the US GDP. The typi-
cally stronger link of the United Kingdom (GB) with the
US is reflected in a smaller phase di↵erence between the
two economies, while other European economies, such as
Germany (DE), France (FR), Spain (ES), and Italy (IT)
show a larger phase di↵erence.
Furthermore, we see that in the US, the investment

sector plays a leading role in this mode, i.e. the GDI
(light green pointer) leads the GDP (dark blue pointer)
by 3–6 months. This is consistent with the situation at
the onset of the financial crisis in 2008, when large US
investment banks deteriorated most rapidly.71

On the other hand, one notices that the impact on
the German economy was strongest in exports (red poin-
ter), while the GDP impact was smaller and occurred
only considerably later. However, the apparently smal-
ler impact on the German GDP arises from the fact that
the RCs 3-4 capture a generally smaller part of the Ger-
man GDP trend residuals during the Great Recession; see
again Fig. 7. The otherwise strong impact on the GDP is
instead captured by RCs 5-6, as per Fig. 8; this higher-
mode impact is consistent with a double-dip recession in
many European countries.
In contrast to the strong synchronized decline of eco-

nomic activity in many countries across the world during
the Great Recession, Fig. 11 also indicates that the GDP
of China (CN) is in phase opposition to the US GDP. This
anti-correlation is interesting as it points to positive ef-
fects of the Great Recession on the Chinese economy, and
it is also visible in a strong increase of the corresponding
partial RCs during this epoch in Fig. 10(b).

2. Complex EOF 2

The second oscillatory mode captured in the complex
EOF 2 reaches its maximum amplitude at around 1987,
cf. Fig. 9(b). The corresponding partial RCs in Fig. 10(c)
provide a particularly good fit to the GDP trend residu-
als of Japan during this epoch, which suggests that the
Japanese economy plays an important role in this mode,
since it is this country’s economy that su↵ered from an
economic bubble at that time.
The key role of the Japanese economy in this mode

is clearly visible in the corresponding map of phase-and-
amplitude relations in Fig. 12. The US economy, though,
likewise plays a major role in this mode, while the US
GDP leads the Japanese GDP by slightly more than a
quarter of a cycle, i.e. about 3 years. The correspon-
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Figure 10. GDP trend residuals of ten major economies (in color) and their reconstructions (black) with (a) RCs 3-4, as
reproduced from Fig. 7; and (b–e) partial RCs 1–4 from the complex EOF analysis in Fig. 9. For ease of comparison, the GDP
trend residuals have been rescaled to the interval [�100, 100].

ding partial RCs of the US GDP, cf. Fig. 10(c), again
appear in phase with the NBER-defined recessions, alt-
hough their relative importance in the explanation of the
US GDP trend residuals is much smaller in comparison
with the leading oscillatory mode in Fig. 10(b).

European economies, on the other hand, show a less
consistent picture of phase relations in Fig. 12. While
the strong link of the United Kingdom to the US is again
reflected in a small phase di↵erence between the two eco-
nomies, the German economy seems to follow Japan in
this mode.

3. Complex EOF 3

The next oscillatory mode is captured by complex EOF
3 and it reaches a maximum amplitude around the year
2000, cf. Fig. 9(c), although the amplitude increases
again toward the end of the observation interval. The
corresponding partial RCs in Fig. 10(d) provide a parti-
cularly good fit to the GDP trend residuals of China, as
clearly seen in the phase-and-amplitude map of Fig. 13.

The mode seems to capture several consecutive events

that have a↵ected the world economy at that time. On
the one hand, we see in Fig. 13 that countries in Sout-
heast Asia — like Indonesia (ID), Thailand (TH) and
Singapore (SG) — and in the Far East, like South Ko-
rea (KR), show a phase lead that could be attributed to
the Asian financial crisis in 1997. The crisis is known to
have started in Thailand, which is reflected in Thailand’s
phase lead in the figure, while Japan (JP) was also af-
fected because of its strong export links with these parts
of Asia.

The US economy, on the other hand, lags these Asian
economies by about two years. The corresponding par-
tial RCs of the US GDP in Fig. 10(d) again appear in
phase with the NBER recessions, and they show a strong
decline during the 2001 recession, i.e. after the collapse
of the dot-com bubble. Figure 13 also suggests later ef-
fects of this mode in many European countries, with a
particularly strong impact on the German economy.
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Figure 12. Same as Fig. 11, but for complex S-EOF 2.

Figure 13. Same as Fig. 11, but for complex S-EOF 3.

4. Complex EOF 4

Finally, the present synchronization analysis yields an
oscillatory mode in complex EOF 4 that reaches its max-
imum amplitude during the time interval 1970–1980, as

seen from Fig. 9(d). Among the ten major economies
shown in Fig. 10(e), the partial RCs provide a particu-
larly good fit to the GDP trend residuals of Germany
during this interval. It is remarkable that the strong do-
wnward swing in the partial RCs agrees in its timing with
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Figure 14. Same as Fig. 11, but for complex S-EOF 4.

the 1979 oil shock.
Despite the small relative importance of the partial

RCs for the US GDP in this mode, the corresponding
phase-and-amplitude map in Fig. 14 indicates that the
absolute e↵ects of this mode on the US economy are still
quite large. It appears that its impact was particularly
strong on US consumption (purple pointers in the figure),
while the impacts on German and Japanese consumption,
but also on that of other countries, like Mexico (MX),
become visible as well. With respect to the chronology of
the 1979 oil shock, it is interesting to note that the mode
is characterized by a large lead in Iran’s (IR) exports, a
lead that is consistent with a preceding strong reduction
in Iran’s oil production (not shown).

C. Discussion

In this section, we have tried to assess the evidence
for synchronized business cycle activity across countries,
regions, and the world. Relying on the complementary
M-SSA algorithm introduced in Sec. III C, we were able
to identify a major oscillatory mode of 7–11-yr period
that already captures 73% of the trend residuals’ vari-
ance, while a second oscillatory mode of 5–6-yr period
captures another 18%, for a combined total of 91%.

The combination of these two modes provides a re-
markably good reconstruction of the apparently rather
erratic behavior of the trend residuals. This can be in-
terpreted as a strong indicator for the existence of un-
derlying low-dimensional attractors, such as limit cycles.

That is, even after having lost their stability to succes-
sively more complex and realistic solutions, “ghost limit
cycles” a.k.a. unstable periodic orbits still play a role in
the synchronization of economic activity.
Despite the appealing simplicity that the low-order ap-

proximation via a few oscillatory mode involves, the cor-
responding spatio-temporal structure still renders a pic-
ture that is quite intricate. In a subsequent complex
EOF analysis, we have therefore tried to break down this
intricate structure into simpler components.
In a complex EOF analysis in T-mode, as outlined in

Sec. III E, it turns out that the behavior of the leading
oscillatory mode with the 7–11-yr period can be essen-
tially decomposed into four distinct patterns. Each of
the four is more or less associated with a certain sub-
interval of time in Fig. 9. This clustering in time gave
birth to the heuristic idea of so-called “snapshots,” which
characterize the state-space evolution over time.46 The
individual snapshots, though, exhibit a rather complex
structure of phase and amplitude relations, which is con-
sistent with fairly sudden structural changes between the
snapshots. These results flesh out, therefore, the rather
complex nature of business-cycle synchronization as time
evolves.74

The idea of snapshots associated with distinct time
intervals is only partially valid, though, according to a
more careful inspection of Fig. 9. Note, for example,
the rather persistent character of the oscillation captured
by the leading complex EOF in Fig. 9(a), which has a
non-vanishing amplitude throughout the full observation
interval. This mode seems, therewith, to point to the
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existence of a common mode of business cycle activity
that might be associated with a world business cycle.8

The strong increase of this mode toward the end of the
time interval could thus be driven by an increasing global
integration of markets, an integration that has led also
to a globally synchronized recession.

The present analysis was conducted with no particular
connection to the arguments about the causal mecha-
nisms of the cycles that we detected, like the endogenous
vs. exogenous nature of business cycles. Be that as it
may, the phase and amplitude relations in Fig. 11 ren-
der a remarkably diverse picture of the distinct countries’
state-space evolution and of the lag-and-lead ordering in
their macroeconomic variables. While some highly idea-
lized models — like the NEDyM model63, for instance —
have had remarkable success in reproducing certain sty-
lized facts of business cycles in an isolated economy, the
generalization of these results to groups of countries and
the inclusion of possible synchronization among them re-
mains a subject of ongoing research.

As part of a better understanding of economic synchro-
nization, the complex EOFs 2–4 of lower variance can
also be seen as smaller transitory shocks, superimposed
on the world business cycle of complex EOF 1. Several of
the features discussed in connection with the snapshots of
Figs. 12–14 appear to be associated with sector-specific
and region-specific synchronization e↵ects.

Some scholars, for example, argue that the creation
of specialized production structures leads to similar pro-
duction patterns, and as a consequence, the business cy-
cles of the countries that share such a structure would
tend to converge.75,76. Other scholars pay greater atten-
tion to trade barriers, arguing that their removal enhan-
ces synchronization.76–78 Finally, monetary and financial
integration, in which monetary policies are less asym-
metric, exchange rates more stable, and trading relati-
ons stronger, are also likely have a positive impact on
synchronization.6–9

In addition to the analysis in T-mode, we have further-
more analyzed the M-SSA ST-EOFs 3-4 using a complex
EOF analysis in S-mode (not shown). Such an S-mode
analysis tends to bring out regional and sectorial clus-
ters, cf. Sec. III E. In using it, we were able to identify
three main oscillatory modes, each of which is dominated
by the temporal behavior of the US, China, and Japan,
respectively. The leading US mode captures 66% of the
variance, while the two other modes capture only 11%
each. The corresponding phase-and-amplitude map of
the leading S-mode (not shown) resembles in many de-
tails that of the leading T-mode in Fig. 11, and thus
provide further evidence for the leading role of the US
economy in the generation of a world business cycle.

Beside these three S-modes, there was no further indi-
cation of smaller, supranational clusters in this leading
mode of 7–11-yr period, for example on the European
Union level. This finding is consistent with other ana-
lyses, in which global factors play a major role in the
business cycle dynamics in most countries, while region-

specific factors play a more minor role.8,79 On the ot-
her hand, the question of whether other higher-frequency
modes reflect more region-specific factors will be left for
future studies.

VI. CONCLUDING REMARKS

In the present paper, we have studied common dy-
namical properties of business-cycle fluctuations across
countries and macroeconomic indices. In a large sample
of over 100 economies that represent economic regions
from all around the world, we were able to identify shared
mechanisms and common spectral properties of business
cycle activity.
To identify shared oscillatory modes, we relied here on

the advanced spectral methodology of multivariate singu-
lar spectrum analysis (M-SSA; Ghil et al. 10 , Alessio 38 ,
and references therein). This methodology has already
proven its e�ciency and accuracy in the spatio-temporal
analysis of large datasets and in the analysis of phase
synchronization.
In the present paper, we have furthermore introduced

a modification of the M-SSA approach to identify chan-
ges in the spatio-temporal structure of oscillatory modes.
We proposed herein a complementary M-SSA algorithm
that is flexible enough to reconstruct oscillatory behavior
with structural changes in the space and time domain. A
subsequent complex EOF analysis48 helps the systematic
decomposition of the complex spatio-temporal structure
into simpler oscillatory patterns.
We have presented two variants of simple-structure ro-

tation for complex EOFs. In the so-called S-mode, a
rotation is applied to the complex S-EOFs and results in
spatially distinct clusters, in a manner that is similar to
varimax M-SSA analysis15,23. In the alternative T-mode,
a rotation is applied to the complex T-EOFs and yields
a complementary view of distinct clusters in time. In a
numerical study of a chain of coupled oscillators, we have
shown that — in the case of intermittent synchronization,
in which global synchronization is not yet reached — the
T-mode rotation separates time intervals of global sy-
nchronization from those of asynchronous, out-of-phase
behavior.
These algorithmic developments and their numerical

results were applied next to our macroeconomic data.
The key finding is the identification of a common mode
of business cycle activity that is shared by many econo-
mies and their individual macroeconomic indicators. The
leading mode of variability, with its 7–11-yr period, has
a persistent component that supports the existence of a
world business cycle. Superimposed on this persistent
component, we were able to identify further components
that capture substantial fractions of variability over dis-
tinct time intervals. These lower-variance modes can be
linked to several economic crises in the world economic
activity of the postwar era.
Describing in a quantitative and self-consistent way the
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complex dynamics of global economic behavior and its
evolution over time is a crucial step toward a better un-
derstanding of the causes of the dynamics and of its chan-
ges. Such a description can play, furthermore, a key role
in understanding the nonlinear interactions between the
macroeconomic system and the climate system, cf. Groth
et al. 80 , Ogutu et al. 81,82?, and references therein.

Substantial uncertainties remain regarding the degree
of warming, and the part of natural variability in it, while
even more controversial are the socio-economic conse-
quences of climate change, as well as the costs of redu-
cing greenhouse gas emissions and of adapting to a chan-
ging climate. There are numerous di�culties in trying to
study the coupled behavior of the socio-economic system
and the climate system, each of which is highly complex
and nonlinear, as well as manifesting variability on a wide
range of time and space scales.

The introduction of Representative Concentration
Pathways (RCPs)83 into the Fifth Assessment Re-
port (AR5) of the Intergovernmental Panel on Climate
Change (IPCC)84 aimed to improve the exchange of in-
formation among natural and social scientists. Although
these RCPs expedite climate modeling in parallel with
the development of socio-economic and emission scena-
rios, the problems due to a lack of inclusion in the IPCC
models of realistic feedbacks between the two systems —
and to real communication between the research com-
munities that study each of them separately85 — persist.
There are by now several truly coupled integrated as-
sessment models (IAMs)86–88 but these IAMs disregard
variability and represent both climate and the economy
as a succession of equilibrium states with no endogenous
dynamics.

Our findings raise questions about the assessment of
climate change that are based purely on long-term econo-
mic growth models, and they emphasize the importance
of endogenous dynamics in the interaction between na-
tural climate and economic variability.
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Appendix A: Varimax rotation of M-SSA EOFs

Groth and Ghil 15 have proposed a special version of
the varimax algorithm89 for the M-SSA eigenvectors, in
order to simplify their dynamical interpretation and to
reduce mixture e↵ects. In this version, only the spatial
variance between the channels EEEd of EEE in Eq. (4) is max-
imized. Let edk(m) be the m-th row element of the k-th

column in segment EEEd. Prior to the calculation of the va-
rimax criterion in each rotation step, one computes the
participation index

⇡dk =
MX

m=1

e

2
dk(m) (A1)

of channel d to the k-th ST-EOF.
The varimax algorithm then seeks to maximize the

quadratic functional
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subject to the normalization hd =
PS

k=1 ⇡dk. The va-
rimax algorithm’s original simplicity of pairwise rotati-
ons of eigenvectors is also maintained in the maximiza-
tion of VM . Alternatively, a closed matrix formulation
of the algorithm for the simultaneous rotation of all S
eigenvectors by iterative SVD decompositions has been
proposed.42 Whichever algorithm is used to maximize
VM , the resulting RCs typically tend to yield a unimo-
dal, narrowband power spectral density that is clearly
associated with a unique frequency.58

In the complementary M-SSA algorithm, we likewise
seek to improve the separability of distinct oscillations
by a subsequent varimax rotation of VVV. Let vdk(n) be the
n-th row element of the k-th column in segment VVVd. The
varimax algorithm then seeks to maximize the functional
(A2) for the participation index

⇡dk =
N 0X

n=1

v

2
dk(n) . (A3)

Appendix B: Phase composites and phase maps

In the standard M-SSA algorithm, a helpful tool for
the understanding of the spatio-temporal dynamics of
the reconstructed oscillatory behavior is that of a phase-
composite analysis,41 in which the SVD of the correspon-
ding RCs is calculated. A phase is then defined as the
argument of (i) the leading PC, expanded into the com-
plex plane via its first derivative;90 or of (ii) the leading
two PCs in phase-quadrature.43 In either case, the oscil-
latory behavior is su�ciently well represented in a two-
dimensional subspace, in which the oscillation is descri-
bed as the outer product of an instantaneous and a spa-
tial phase.43

In the complementary M-SSA analysis of Sec. III C,
however, the RCs can exhibit more complex oscillatory
behavior, as seen, for example, in Fig. 2(b). A subse-
quent complex-EOF analysis, cf. Sec. III E, then yields
a further decomposition of the complex oscillatory beha-
vior into a set of oscillations with simpler spatio-temporal
structures. According to Eq. (13), this simplification is
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understood in the sense that the oscillations can be des-
cribed by the outer product of complex T-EOFs and S-
EOFs.

Although this procedure is reminiscent of the phase-
composite analysis — with the complex S-EOFs already
providing spatial phase information — the complex T-
EOFs have reduced length N

0 only. Since Eq. (13) provi-
des a factorization of ZZZ, the complex T-EOFs do not con-
tain direct phase information within the window length
M .

It is only the RCs that capture the phase of the time
series in a well-defined least-squares sense, and a possible
solution to this problem could be to first calculate the
corresponding partial RCs from Eqs. (10) and (14), and
then the SVD.

A mathematically more elegant solution, without the
need for an additional SVD, starts by replacing T-EOF
vp and vq in (10) with the real and imaginary part of
the k-th complex T-EOF in U

U

Uc, respectively. We obtain,
accordingly, two matrices RRRp and R

R

Rq, each of size M⇥N

0,
while averaging along the skew diagonals yields the real
and imaginary part of a new complex vector u of length
N . The oscillation in the k-th partial RC, is finally given
by the outer product of u and the corresponding k-th
complex S-EOF in V

V

Vc, as seen, for example, in Figs. 9
and 11, respectively.

To obtain estimates of the spatial phase and amplitude
for additional time series with missing values, we start by
setting all missing values to zero. Next, we project the
filled-in time series onto the oscillatory pair of “filter”
EOFs in the matrix U

U

U obtained by the complementary
M-SSA algorithm. This projection yields estimates for
vp and vq, which are then projected onto U

U

Uc from the
complex-EOF analysis to finally obtain estimates of VVVc,
as done, for example, in order to obtain Fig. 11.
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