Making carbon pricing work

David Klenert, Linus Mattauch, Emmanuel Combet, Cameron Hepburn, Nicholas Stern
Carbon pricing: efficiency and equity

Carbon pricing efficient but limited coverage:
- Raising US$ 26 billion
- Only around 13% of global greenhouse gas emissions covered (World Bank, 2016)

Equity
- Carbon pricing regressive in developed countries, due to carbon-intensive subsistence consumption (Grainger and Kolstad, 2010).
- Neutral or progressive in developing countries (Sterner, 2011)
Carbon pricing: acceptability?

For humans, not econs, acceptability goes beyond equity and efficiency!
Research question and methods

• How should the revenue recycling of a carbon pricing reform be designed in order to be successful?

• Analyze insights from:
 1. general equilibrium modeling
 2. integrated assessment modeling (IAM)
 3. optimal taxation theory
 4. behavioral economics

• Provide a rough classification of different recycling schemes in terms of efficiency, equity and acceptability

• Contrast theoretical insights with data on existing carbon pricing schemes
Main findings

Recycling of revenue in carbon pricing schemes should involve one or more of the following characteristics:

1. green spending
2. covering losses of incumbents
3. providing salient dividends to all households
4. supporting especially affected households.
I. Revenue recycling: Theoretical foundations

II. Comparing different recycling options

III. Real-world carbon pricing schemes

IV. Summary and policy implications
Theory (I)

General equilibrium models

- Distortionary tax required to raise revenue
- Introduce a price on carbon – lower distortionary tax with carbon tax revenue
 - cost reduction of carbon tax reform
- Example: labor taxes, (weak) **double dividend** (Bovenberg, 1999; Boulder, 1995)

Integrated assessment models

- Computable general equilibrium models calibrated to economic data in great detail (Carbone et al., 2013; Boulder and Hafstead, 2013; Rausch et al., 2011)
- Ranking of different recycling options
 - **Efficiency**: capital/corp. tax cuts > labor tax cuts > transfers
 - **Equity**: transfers > labor tax cuts > capital/corp. tax cuts
Theory (II): Optimal taxation

Taxes are set optimally to internalize an externality:

- oversaving in an overlapping generations model (capital taxes)
- suboptimal distribution in a Mirrlees model (labor taxes)

Example: Optimal labor and environmental taxation (Aigner, 2015; Cremer et al., 1998; Jacobs and de Mooij, 2015; Klenert et al., 2016)

- What are optimal labor and environmental tax rules? (How) do they interact?
- Main results: If labor tax system before the reform is
 - Optimal: recycling through labor tax cuts yields no weak double div. instead, uniform lump-sum transfers are preferable
 - Suboptimal: recycling through labor tax cuts moves tax system closer to optimum, enhances equity and efficiency
Theory (III): Behavioral economics

General insights on the acceptability of carbon pricing reform design (going beyond equity and efficiency):

1. **Recycling** is important since the effectiveness of Pigouvian taxes is often doubted
2. **Labeling**: Don't call it a tax!
3. **Earmarking** the revenue for a specific purpose enhances acceptability
4. Making benefits **salient** enhances acceptance
5. Olson (1965): a policy reform can only be successful if the costs are **diffused** and the benefits are **concentrated**. Confirmed by Kallbekken et al. (2011) with experiments.

Literature: Baranzini and Carattini, 2016; Chetty et al., 2009; Kallbekken et al. 2011; Rivers and Schaufele, 2015
I. Revenue recycling: Theoretical foundations

II. Comparing different recycling options

III. Real-world carbon pricing schemes

IV. Summary and policy implications
Recycling options

- Revenue-neutral
 - Tax cuts
 - Labor
 - Capital/corp.
 - Transfers
 - Uniform
 - Directed

- Non-neutral
 - Public investment
 - General budget
 - Debt reduction
Labor tax cuts

- General equilibrium/optimal taxation: If labor tax system before the reform is
 - suboptimal, reducing labor tax rates can enhance efficiency and reduce inequality.
 - optimal, recycling through uniform lump-sum transfers is superior.

- Integrated Assessment Models:
 - Efficiency: capital/corp. tax cuts > labor tax cuts > transfers
 - Equity: transfers > labor tax cuts > capital/corp. tax cuts

- Acceptability: rather neutral, potential earmarking effect

<table>
<thead>
<tr>
<th></th>
<th>efficiency</th>
<th>equity</th>
<th>acceptability</th>
</tr>
</thead>
<tbody>
<tr>
<td>labor tax (distortionary)</td>
<td>+</td>
<td>+</td>
<td>0</td>
</tr>
<tr>
<td>labor tax (non-distortionary)</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Capital and corporate tax cuts

- General equilibrium modeling & IAMs:
 - **Efficiency-enhancing** since it removes distortions from the economy, (Auerbach and Hassett, 2015; Goulder, 2013)
 - **Regressive** since capital/firm owners benefit

- Optimal taxation
 - Capital taxes are already set optimally in order to address some externality. Reducing them would distort the economy.

- Behavioral economics
 - Earmarking

<table>
<thead>
<tr>
<th></th>
<th>efficiency</th>
<th>equity</th>
<th>acceptability</th>
</tr>
</thead>
<tbody>
<tr>
<td>Capital tax (distortionary)</td>
<td>+</td>
<td>-</td>
<td>0</td>
</tr>
<tr>
<td>Capital tax (non-distortionary)</td>
<td>0</td>
<td>-</td>
<td>0</td>
</tr>
</tbody>
</table>
Directed transfers

- General equilibrium modeling & IAMs:
 - Not efficient (does not remove distortions)
 - Progressive – more than offsets regressive effects of carbon price
- Optimal taxation: --------
- Behavioral economics
 - Earmarking
 - Olson (1965) fulfilled: diffused costs, concentrated benefits
 - Salience: transfers very visible

<table>
<thead>
<tr>
<th></th>
<th>efficiency</th>
<th>equity</th>
<th>acceptability</th>
</tr>
</thead>
<tbody>
<tr>
<td>directed transfers</td>
<td>0</td>
<td>+</td>
<td>+</td>
</tr>
</tbody>
</table>
Uniform transfers

- General equilibrium modeling & IAMs:
 - Not efficient (does not remove distortions)
 - Progressive – more than offsets regressive effects of carbon price (less than directed transfers)
- Optimal taxation:
 - More efficient than labor tax cuts if pre-existing tax system is optimal
- Behavioral economics
 - Salience: transfers very visible
 - Survey (CH): very popular due to distributional fairness and simplicity (Carattini et al., 2016)

<table>
<thead>
<tr>
<th></th>
<th>efficiency</th>
<th>equity</th>
<th>acceptability</th>
</tr>
</thead>
<tbody>
<tr>
<td>uniform transfers (tax system optimal)</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>uniform transfers (tax system non-optimal)</td>
<td>0</td>
<td>+</td>
<td>+</td>
</tr>
</tbody>
</table>
Non-neutral recycling

Public investment:
- excellent option in the long term in terms of equity and efficiency. Short term effects adverse.
- acceptability: enhanced due to (a) earmarking and (b) if spent on green investment, compensates for ignorance of workings of Pigouvian taxation

Debt reduction:
- exacerbates intergenerational inequality but very efficient since it implies lower tax rates in the future. (Rausch and Reilly, 2015).
- acceptability: unclear, potential positive effect due to earmarking.

General budget:
- Terrible option from the point of view of acceptability, because of lack of understanding of Pigouvian taxation (Kallbekken et al., 2011).

<table>
<thead>
<tr>
<th></th>
<th>efficiency</th>
<th>equity</th>
<th>acceptability</th>
</tr>
</thead>
<tbody>
<tr>
<td>public investment</td>
<td>-</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>(short term)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>public investment</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>(long term)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>debt reduction</td>
<td>+</td>
<td>-</td>
<td>0</td>
</tr>
<tr>
<td>general budget</td>
<td>?</td>
<td>?</td>
<td>-</td>
</tr>
</tbody>
</table>
Theory: summary

- If pre-existing income tax system is optimal: uniform lump-sum transfers best
- Otherwise: labor tax reduction, uniform and directed transfers are all ++
- If state of tax system is unclear, uniform lump-sum transfers are a safe bet.

<table>
<thead>
<tr>
<th></th>
<th>Efficiency</th>
<th>Equity</th>
<th>Acceptability</th>
</tr>
</thead>
<tbody>
<tr>
<td>Revenue-neutral</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>labor tax (distortionary)</td>
<td>+</td>
<td>+</td>
<td>0</td>
</tr>
<tr>
<td>labor tax (non-distortionary)</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>capital/corporate (distortionary)</td>
<td>+</td>
<td>-</td>
<td>0</td>
</tr>
<tr>
<td>capital/corporate tax (non-distortionary)</td>
<td>0</td>
<td>-</td>
<td>0</td>
</tr>
<tr>
<td>directed transfers</td>
<td>0</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>uniform transfers (tax system optimal)</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>uniform transfers (tax system non-optimal)</td>
<td>0</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Non-neutral</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>public investment (short term)</td>
<td>-</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>public investment (long term)</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>debt reduction</td>
<td>+</td>
<td>-</td>
<td>0</td>
</tr>
<tr>
<td>general budget</td>
<td>?</td>
<td>?</td>
<td>-</td>
</tr>
</tbody>
</table>
Theory: summary

- If acceptability is excluded, ranking is more ambiguous
- Uniform lump-sum transfers not always a safe bet

<table>
<thead>
<tr>
<th></th>
<th>efficiency</th>
<th>equity</th>
<th>acceptability</th>
</tr>
</thead>
<tbody>
<tr>
<td>Revenue-neutral</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>labor tax (distortionary)</td>
<td>+</td>
<td>+</td>
<td>0</td>
</tr>
<tr>
<td>labor tax (non-distortionary)</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>capital/corporate (distortionary)</td>
<td>+</td>
<td>-</td>
<td>0</td>
</tr>
<tr>
<td>capital/corporate tax (non-distortionary)</td>
<td>0</td>
<td>-</td>
<td>0</td>
</tr>
<tr>
<td>directed transfers</td>
<td>0</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>uniform transfers (tax system optimal)</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>uniform transfers (tax system non-optimal)</td>
<td>0</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Non-neutral</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>public investment (short term)</td>
<td>-</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>public investment (long term)</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>debt reduction</td>
<td>+</td>
<td>-</td>
<td>0</td>
</tr>
<tr>
<td>general budget</td>
<td>?</td>
<td>?</td>
<td>-</td>
</tr>
</tbody>
</table>
I. Revenue recycling: Theoretical foundations

II. Comparing different recycling options

III. Real-world carbon pricing schemes

IV. Summary and policy implications
Real-world carbon pricing

- Range of carbon prices in these regions: 15–131 US$/tCO2e

- All schemes return a share of the revenue to the households (blue) and a share to firms (green)

- Three of the five use the revenue for some form of government financing/investment
Real-world carbon pricing: global scale

- Fundamental differences in recycling between tax and emission trading schemes.
- Tax schemes return a much higher percentage to households and firms.
- ETS use the majority of revenues for green spending (excluding grandfathered permits).

Global revenue recycling

Based on: Carl and Fedor (2016), data from 2013.
I. Revenue recycling: Theoretical foundations

II. Comparing different recycling options

III. Real-world carbon pricing schemes

IV. Summary and policy implications
Summary: methods and results

- We provide an ordinal classification of revenue recycling options by considering: equity, efficiency and other acceptability criteria.

- Real-world recycling schemes differ widely across regions and depending on the exact design of the pricing (tax vs. ETS)

- The five analyzed recycling schemes have two things in common:
 (i) especially affected households are reimbursed,
 (ii) both households and firms receive a share of the revenue.
Summary: Policy implications

1. Uniform lump-sum recycling:
 - non-distortionary, salient, simple, progressive (popular in survey study)
 - a safe option if optimality of the income tax system is unclear

2. Carbon revenue recycling in the real world depends strongly on the political and economic context:
 - **Focus on distribution**: directed transfers outperform other mechanisms
 - **Focus on efficiency**: corporate and capital tax reductions/debt reduction
 - If **initial income tax system is very inefficient**, using the carbon tax revenue to make it more efficient could enhance both equity and efficiency.
 - **Using the revenue for green investments**, could enhance support from citizens which are unaware of the workings of a Pigouvian tax.
Latest example: Californian „Cap and Dividend“?

- Legislative proposal (SB775), announced May 1, 2017 to replace existing Californian ETS from 2021 on.
- Cap and Trade scheme with price floor (details debated).

Revenue recycling:
- 50-90% as **lump-sum dividend**
- Remainder used for "**green spending**":
 - public infrastructure investments, notably in disadvantaged communities
 - climate and clean energy research and development
Thank you for your attention

Year 2060: The search for a breakthrough technology to solve climate change continues.

It's a time machine we hope will take us back 50 years when we should have put a price on carbon.

We better hurry!

No! That's the great thing about this technology!

Literature