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Abstract

We consider a partial equilibrium model to study the optimal phasing out of pol-

luting goods by green goods. The unit production cost of the green goods involves

convexity and learning-by-doing. The total cost for the social planner includes the

private cost of production and the social cost of carbon, assumed to be exogenous

and growing at the social discount rate. Under these assumptions the optimization

problem can be decomposed in two questions: (i) when to launch a given schedule;

(ii) at which rate the transition should be completed that is, the design of a transition

schedule as such. The first question can be solved using a simple indicator interpreted

as the MAC of the whole schedule, possibly non optimal. The case of hydrogen vehicle

(Fuel Cell Electric Vehicles) o↵ers an illustration of our results. Using data from the

German market we show that the 2015-2050 trajectory foreseen by the industry would

be consistent with a carbon price at 52e/t. The transition cost to achieve a 7.5 M

car park in 2050 is estimated at 21.6 billion e that is, using 4% discount rate, 115 e

annually for each vehicle which would abate 2.18 tCO
2

per year.
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1 Introduction

Marginal abatement costs (MACs) are practical indicators used in policy discussions. Sim-

ply stated, the MAC is the marginal cost incurred for avoiding one unit of CO
2

emission

through the substitution of a dirty technology by a clean technology. MACs are notably used

to critically assess decarbonization e↵orts among sectors and arbitrage the opportunity of

launching technical options (Marcantonini and Ellerman, 2014; Archsmith et al., 2015). This

indicator is formally defined in a static context. The objective of this paper is to propose a

simple extension in dynamic situations involving learning-by-doing e↵ects.1

We consider a partial equilibrium model. The market size is fixed and initially served by

polluting goods that must be produced at every point in time at constant marginal cost. The

production cost of green goods at a given time is convex with respect to current production

and decreases with cumulative past output thanks to learning-by-doing. The total cost of

transition for the social planner, to be minimized, includes the private cost of production

and the social cost of carbon. The latter is assumed to be exogenous and to grow at the

social rate of discounting.

Under these assumptions we show that the optimization problem can be nicely decom-

posed into two questions: (i) when to launch a given schedule; (ii) at which rate the transition

should be completed, that is, the design of a transition schedule as such. Interestingly the

first question can be answered also for suboptimal schedules. Indeed we define a dynamic

abatement cost (to be denoted as DAC) for a given transition schedule, possibly suboptimal.

Its expression is quite simple to obtain thanks to our assumption regarding the evolution of

the CO
2

price. The DAC can be interpreted as the MAC of the whole transition schedule

(Proposition 1). As for the second question we show that the shape of the optimal transition

schedule is independent of the CO
2

price level (Lemma 3). More precisely the CO
2

price

sequence only determines the optimal launching date but not the optimal shape as such

(Proposition 2). A comparative static property follows (Corollary 2). For completeness we

also show how the DAC should be modified if the CO
2

grows at a rate di↵erent form the

1A survey of learning-by-doing rates for di↵erent energy technology can be found in IEA (2000) and

McDonald and Schrattenholzer (2001). Learning rates (cost reduction when production doubles) varies from

25% for photovoltaics, 11% for wind power, and 13% for fuel cell in the period 1975-2000.
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social discount rate (Corollary 3).

From a theoretical standpoint our model can be seen as a particular specification of similar

models developed in the literature. It delivers the standard result that along the optimal

trajectory the CO2 price should be equal to the sum of two terms: the di↵erence between

the cost of the marginal green good and a polluting good; and the learning benefits over the

future (lemma 1). This result, well known in the literature on climate policy and induced

technical change (e.g. Goulder and Mathai, 2000; Bramoullé and Olson, 2005) illustrates the

inter-temporal consistency of the optimal trajectory.

The role of convexity has been stressed by Bramoullé and Olson (2005) in their study

of the role of learning-by-doing in sectoral arbitrage. Without convexity, learning-by-doing

alone does not justify a progressive deployment of the clean option and learning would oc-

cur in one single step. This feature is also present in our model (lemma 2). Our model

is also reminiscent of researches on investment in clean capital with adjustment cost (e.g.

Vogt-Schilb et al., 2012; Amigues, La↵orgue and Moreaux, 2015; Amigues, Ayong Le Kama

and Moreaux, 2015). With learning-by-doing, clean units play a dual role of being both a

consumption good and an investment in clean (knowledge) capital. These models typically

recommend early deployment of green technologies. The recommendation of early deploy-

ment is also present in analytical macro models though these models remain imprecise on

the specific sectoral cost assumptions that would justify their conclusions (e.g. Grimaud and

Rouge, 2008; Acemoglu et al., 2012). All these models are di�cult to implement. In par-

ticular they stress that levelized cost could be misleading to compare sectoral options. Our

contribution provides conditions to overcome this di�culty through a simple indicator to

assess the optimal launching time of the green technology.

The case of hydrogen vehicle (a.k.a. Fuel Cell Electric Vehicles) for the substitution of the

mature gasoline vehicle (a.k.a. Internal Combustion Engine) provides an illustration for our

methodology. We define a deployment schedule for hydrogen from 2015 to 2050, construct

its associated yearly cost, compare this cost with the cost of ICE, and derive the dynamic

abatement cost. Depending on the selected estimate of the social cost of carbon in 2015,

this analysis provides some rationale for initiating the deployment of hydrogen in 2015 or

later. Our data is mostly built from a study sponsored by industry (McKinsey & Company,
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2010). There are a number of other studies on the deployment of hydrogen. We give special

attention to Rösler et al. (2014) which carries an in depth investigation using the energy

bottom-up model TIAM-ECN (Loulou, 2008; Loulou and Labriet, 2008) to build scenarios

up to 2100 for passenger car transportation in Europe. They show that hydrogen vehicle

could achieve most of the market in 2050 if no significant breakthrough in battery is made.

Bruegel and the European School for Management and Technology revisit the economic

rationale for public action for hydrogen vehicle (Zachmann et al., 2012). Harrison (2014)

provides an extensive analysis of the environmental and macroeconomic impacts (growth,

employment, trade) of alternative motor ways (gasoline, battery electric, hydrogen) at the

European level at the 2050 horizon. In these models the total cost of ownership (TCO i.e.

purchase price, maintenance and fuel, all costs annualized) for all power-trains are expected

to converge around 2040. In contrast, Oshiro and Masui (2014) analyze the Japan market

and find that battery electric vehicles would take most of the passenger car market in 2050

while the share of hydrogen would remain marginal.

Using our methodology we show that for the deployment of hydrogen vehicles proposed

by industry (McKinsey & Company, 2010) for the German market would be consistent with

a carbon price at 52 e /tCO
2

. This is much lower than estimates obtained through a static

approach which range typically around 800 to 1000 e /tCO
2

(e.g. Beeker, 2014). In a static

approach the abatement cost decreases annually which pervades its interpretation. In our

approach, we aim at the substitution of 7.5 M gasoline vehicles by hydrogen vehicles over

a period of 35 years (2015 to 2050). At first the manufacturing cost of a hydrogen vehicle

is 60 k e much higher than the manufacturing cost of a gasoline vehicle 22 k e. The

learning-by-doing and the cumulative production of 13.4 M hydrogen vehicles implies that

the manufacturing cost will drop to 22.8 e so that the total cost of ownership of both

technologies will approximately converge in 2050. The discounted transition cost of this

transition is estimated at 21,6 bne that is 2 882 e per vehicle in the 7.5 M car park, or 115

e per year assuming a 4 % discount rate. The substitution of polluting by greener cars will

permanently abate 2.18 tCO
2

per vehicle thanks to the progressive introduction of carbon

free technologies to produce hydrogen. This gives the 52 e /tCO
2

estimate.

The paper is organized as follows. Section 2 presents the analytical model and develops
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the first best and second best scenarios. Section 3 illustrates the application to the case of

hydrogen versus gasoline, whereas Section 4 concludes.

2 The analytical framework

2.1 The model

We consider a simple model of a sector, say the car sector, whose size is constant. There are

two varieties of vehicles: cars build by using an old polluting technology (gasoline vehicle) and

new ones which are carbon-free (hydrogen vehicle). The new technology displays learning-

by-doing.

Time is continuous from 0 to +1. The discount rate is constant equal to r. We consider

that cars last one unit of time. There are N cars among which x new “green” cars and N�x

polluting old cars. Units are normalized so that each old car emits one unit of CO
2

, green

cars do not pollute. The cost of an old car is constant: co. The cost of x new green cars

is a function of the knowledge capital X: C(X, x). At any time t 2 [0,+1) the knowledge

capital Xt is equal to the total quantity of green cars previously built Xt =
R t

0

xudu.

The cost C(X, x) is assumed thrice di↵erentiable and positive. It is null for x = 0, for all

X: C(X, 0) = 0, 8X, and strictly positive otherwise. The cost is increasing and convex with

respect to x, the quantity of green cars produced. Knowledge reduces production cost and

this e↵ect decreases with the knowledge stock. The marginal production cost also decreases

with knowledge. These assumptions translate formally as follows:2

Cx � 0, CX  0, Cxx > 0, CXX > 0 and CXx  0. (A1)

To ensure the convexity of the problem we assume that the following condition holds:

[CXx]
2 < CXXCxx. (A2)

Finally, we assume that the e↵ect of knowledge on the marginal cost, �CXx, is larger for

larger production. Said di↵erently, the derivative CX is concave with respect to x, that is,

CXxx < 0.
2Partial derivatives are denoted with indexes (except if it could be confusing) for instance CX stands for

@C/@X.
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These cost assumptions are consistent with empirical observations for the deployment

of hydrogen cars (McKinsey & Company, 2010; Brunet and Ponssard, 2016). Convexity

matters at the beginning of the deployment and corresponds to exogenous upper bounds

on investment rates. Infrastructure costs at the early deployment phase are an important

factor that drives convexity during that phase. Here it is materialized by the assumption that

CxX < 0. Learning-by-doing matters as the cumulative production of green cars increases, as

is commonly assumed in the deployment of green technologies. Learning-by-doing impacts

the whole deployment and leads to time arbitrage (more production and higher expenses

today for lower unit cost and lower expenses later). Its impact declines over time and

is materialized by the assumption that the marginal production cost also decreases with

knowledge.

The price of CO
2

, or social cost of carbon, is pCO2

t . It is exogenous, which is consistent

with our partial equilibrium approach, and grows at the discount rate pCO2

t = ertp
0

with

p
0

> 0. This assumption will prove very useful to simplify dynamic considerations. It means

that once discounted a ton of CO
2

emissions has the same value whatever the date at which

it is emitted. Such a price dynamics could be linked to the stock nature of CO
2

emissions

and low decays of CO
2

in the atmosphere. It would occur, in a dynamic model if there

was a constraint on the total cumulated emissions according to a CO
2

Hotelling’s rule (e.g.

Vogt-Schilb et al., 2012; Schennach, 2000).3

Indeed, in an standard welfare framework the social cost of CO
2

, its Pigouvian price, is

equal to the discounted flow of damage from a current marginal ton of CO
2

.4 In practice

it depends on various policy considerations, and numerical assessments of the optimal CO
2

price level and dynamics are debated.5 The impact of the growth rate of the CO
2

price is

3According to the IPCC (2013) such a “Carbon Budget” is required to enforce a peak temperature target

(see also Allen et al., 2009; Matthews and Caldeira, 2008).
4 See Tol (2014) for a textbook derivation with several objectives. A targeted stabilization of the con-

centration of carbon in the atmosphere implies a growth rate of the CO2 price equal to the interest rate

plus the decay rate of carbon in the atmosphere (Tol, 2014, p. 53, the “shadow price” of CO2 µ should be

divided by U 0(Ct) to get the expression of the current price of CO2).
5 Several recent contributions attempt to provide and test rule of thumb pricing. Golosov et al. (2014)

propose a simple formula, based on a specified dynamic general equilibrium framework: the price of carbon

should be proportional to world gross domestic product (see also Grimaud and Rouge, 2014; Rezai and

6



discussed in sub-section 2.3.

A notation that will prove useful is the discounted cost of a fully green fleet with a initial

knowledge stock X. This cost is the discounted sum of the costs of producing N green cars

at each time. With this production schedule the knowledge stock at time t is X + tN so this

discounted cost, denoted ⌦(X), is as follows:

⌦(X) =

Z
+1

0

e�rtC(X + tN,N)dt. (1)

Altogether the objective of the social planner is to minimize the cost:

� =

Z
+1

0

e�rt
⇥
(pCO2

t + co).(N � xt) + C(Xt, xt)
⇤
dt (2)

subject to

Ẋt = xt, X0

= 0 (3)

0  xt  N (4)

This is a standard problem, and the qualitative properties of the optimal trajectory have

been already analyzed elsewhere, if not in the precise same framework in relatively similar

ones. The following Lemma describes the features of the optimal trajectory.

Lemma 1 The production of green cars increases over time. There are two dates Ts and

Te, with Ts  Te, at which the transition respectively starts and ends, denoting x⇤
t and X⇤

t

the optimal trajectory:

x⇤
t = 0 for t  Ts

0 < x⇤
t < N for Ts < t < Te

x⇤
t = N for t � Te

During the transition, that is, for t 2 (Ts, Te) the following equation holds:

pCO2

t = [Cx(X
⇤
t , x

⇤
t )� co]

| {z }
static abatement cost

+

Z
+1

t

e�r(⌧�t)CX(X
⇤
⌧ , x

⇤
⌧ )d⌧

| {z }
learning benefit (< 0)

(5)

van der Ploeg, 2015; Van den Bijgaart et al., 2016).
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The proof is in Appendix A, the main step consists in proving that xt is increasing. The

optimal trajectory is a smooth transition in which green cars progressively replace old cars.

At the end of the transition the fleet is completely green. During the transition, the green

share of the fleet is determined by equation (5). This equation stating that the marginal cost

should be equal to the marginal revenue plus the learning benefits recalls a well-known result

in the literature on learning-by-doing whether related to climate policy (e.g. Goulder and

Mathai, 2000; Bramoullé and Olson, 2005), or not (see Rosen, 1972 for an early discussion;

and the survey by Thompson, 2010, eq. 3 p. 435):

Indeed, the static marginal abatement cost, that is, the di↵erence between the cost of

the marginal green car and an old car, is not su�cient to determine the optimal number of

green cars as a function of the CO
2

price. One should also compute the learning benefits,

that is, the reduction of future cost due to the production of one more green car today.

The “relevant ” marginal abatement cost, the right hand side of equation (5), cannot be

computed without knowing the whole future optimal path of production, which limits the

practical use of equation (5).

Considering two extreme cases is useful to interpret the role of our assumptions on cost

in the time dependency. On the one hand, without learning-by-doing, the static abatement

cost is su�cient to determine the optimal number of green cars at each date. There is a

smooth transition. Still, each date can be isolated from the rest of the trajectory: there is

no interdependency between past, present and future decisions. On the other hand, without

convexity, the transition takes place at once and its date can be determined through some

generalization of the notion of abatement cost. Learning-by-doing alone, instead, does not

imply a smooth transition. This is pointed out below.

Lemma 2 If Cxx = 0 then the optimal strategy is to replace all old cars by new cars from a

date Ts = Te. At this date the CO
2

price is:

pCO2

Ts =
r⌦(0)� coN

N
. (6)

in which ⌦(0) is given by equation (1).

The proof is in Appendix B. The threshold of CO
2

price in the equation (6) could be

interpreted as a MAC for the whole technical option: it is the ratio of the di↵erence between
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the levelized (static) cost of a fleet of green cars and a fleet of old cars to the quantity of

emissions abated by the project. In the next subsection, this rule is extended to a general

cost function and a ramping deployment schedule.

2.2 The “deployment” perspective

In the optimal case, the whole trajectory is consistent with the CO
2

price: the date at

which the deployment starts and the pace at which green cars replace old cars are jointly

determined. For a real world application, this theoretical analysis does not provide a simple

rule to evaluate a technical option and a “launching date”. Furthermore, in real world

issues there are many components in the cost (e.g. investment in infrastructure) that do not

easily translate into a clear specification of C(X, x) so that the determination of an optimal

trajectory may be out of reach. It is more useful to discuss suboptimal trajectories.

We propose to decompose the global problem into sub-problems easier to connect to

practical examples, o↵ering straightforward interpretations. We disentangle the choice of

the production schedule of cars during the deployment phase from the choice of a date at

which deployment should start (the date Ts in the optimal scenario). More precisely, the

global problem could be decomposed as follows. There is a “deployment schedule” of the

green option with a finite duration; during this deployment an exogenous given amount

of green cars is produced each year. The “launching date” of this deployment should be

determined. Once deployment is achieved, the whole fleet is replaced by green cars.

Consider a given deployment schedule, possibly non optimal, the only variable to be

chosen is the launching date Tl that should balance the price of CO
2

with the abatement

cost of the deployment. Waiting one year to launch the deployment increases emissions by an

amount proportional to the fleet but postpones the costly deployment and implementation

of the green fleet. The discounted cost of the fleet, given by equation (2), can be decomposed

to reflect this trade-o↵. To do so, the costs of the deployment and the fully green fleet should

be discounted to be independent of the launching date:

• The deployment schedule takes place over D years during which a total quantity of X̄

green cars are produced. The production schedule is denoted ⇠ = (⇠⌧ )⌧2[0,D]

in which
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⇠⌧ is the number of green cars produced at stage ⌧ of the deployment (i.e. ⌧ years after

the launching), and X̄ =
R D

0

⇠⌧d⌧ . The cost of this deployment is the cost to produce

⇠ green cars instead of ⇠ old cars:

I((⇠⌧ )⌧2[0,D]

) =

Z D

0

e�r⌧ [C(X̄⌧ , ⇠⌧ )� co⇠⌧ ]d⌧ in which X̄⌧ =

Z ⌧

0

⇠udu. (7)

• At the end of the deployment the fleet is completely green, and the discounted cost

of the green fleet of cars solely depends on X̄, the knowledge accumulated during the

deployment. This cost, viewed from the date of the end of the deployment, is ⌦(X̄)

given by equation (1).

The discounted cost of the fleet, given by equation (2), can then be written (with a slight

abuse of notation):

�(Tl, X̄,D, ⇠) =

Z Tl+D

0

e�rt(co + pCO2

t )Ndt

| {z }
fully old fleet

+ e�rTlI(⇠)� p
0

X̄

| {z }
deployment phase

+ e�r(Tl+D)⌦(X̄)
| {z }
fully green fleet

. (8)

This cost is the sum of three terms: the cost, including the CO
2

cost, of a fleet of old cars

from today to the end of the deployment; the cost of the deployment minus the gain from

abatement during deployment; once deployment is achieved the fleet is entirely green and the

current cost of the fully green fleet only depends on the quantity of knowledge accumulated

during the deployment.

The problem is now simply to determine the date Tl at which the deployment should be

launched. The assumption that the CO
2

price grows at the interest rate plays a key role

here because the precise date at which carbon reduction takes place does not impact welfare.

The emissions abated during deployment, which are precisely equal to the quantity of cars

accumulated during the deployment, do not impact the choice of the launching date. This

nicely fits our decomposition, since the choice of the launching date only changes costs via

discounting.

Looking for a simple metric for the whole deployment several possibilities arise. While it

is quite straightforward to compute the relative cost of the whole deployment, it is less clear

how the CO
2

avoided during and after deployment should be aggregated. For a standard
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project (e.g. a wind farm), in a stable environment, the MAC indicates both the cost per ton

of CO
2

avoided and the CO
2

price at which the project should be undertaken. Our approach

build on this second consideration to define the Dynamic Abatement Cost.

Proposition 1 The optimal launching date T ⇤
l of the deployment schedule (X̄,D, ⇠) is such

that the CO
2

price at the end of the deployment is equal to the Dynamic Abatement Cost of

the deployment schedule:

pCO2

T ⇤
l +D = DAC

�
X̄,D, ⇠

�
=def

rI

N
erD +

r⌦(X̄)� c
0

N

N
. (9)

Proof. Taking the derivative of the discounted total cost � given by (8) with respect to the

launching date gives:

@�

@Tl
= e�r(Tl+D)(co + pCO2

Tl+D)N � rIe�rTl � r⌦(X̄)e�r(Tl+D)

= e�r(Tl+D)

⇥
pCO2

Tl+DN + coN � rIerD � r⌦(X̄)
⇤
.

At the optimal launching date this derivative is null and, consequently, equation (9) is

satisfied.

This rule can be easily interpreted: the launching date is chosen so that the abatement

cost of the whole deployment is equal to the CO
2

price at the end of the deployment. The

abatement cost of the project is the sum of two components: the sunk cost of the deployment

that takes D years (rI/NerD); and the relative over-cost of a green car at the end of the

deployment ((r⌦(X̄)� c
0

)/N). The cost r⌦(X̄) is the annualized cost of a fully green fleet,

so r⌦(X̄)/N is the average current cost of a green car over the life of the green fleet.

This suggests a simple interpretation of the DAC. Consider the deployment as the tran-

sition needed to achieve the time to market for the green technology. In that case, at the

end of the deployment the cost of a green car would be stable, (C(X, x) = cx). The second

component would then be the di↵erence between the cost of a green and an dirty car (c� c
0

)

divided by the emissions saved by this substitution, that is the MAC at that time. Our defi-

nition of DAC appears as a generalization of the MAC; they coincide whenever there are no

learning-by-doing gains in a deployment while, whenever there are, the first term represents

the unit learning cost to achieve the time to market via the deployment of X̄ to substitute
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N units, again divided by the emissions saved by this substitution. If the time to market

means that the green technology is competitive with the dirty technology, the second term

vanishes and only the transition cost remains. Our paper provides clear assumptions that

make this simple generalization meaningful and details how to compute the corresponding

indicator.

One can also consider the CO
2

price at the launching of the deployment. Policy makers

would certainly be more interested in this indicator: it gives when the trajectory is worth

launching. It is obtained by discounting the DAC:

pCO2

T ⇤
l

=
rI

N
+

r⌦(X̄)� c
0

N

N
e�rD. (10)

Note that the price obtained in Lemma 2 corresponds to the price of Proposition 1 for an

extreme deployment schedule in which there is no spreading of the cumulative production,

that is when X̄ = 0 and D = 0, we have that I = 0.

Corollary 1 Consider two cost functions C
1

(X, x) and C
2

(X, x). If for all X and x, the

cost function 1 is lower than the cost function 2, then for any given deployment schedule

(⇠⌧ )⌧2[0,D]

, the optimal launching date comes earlier with C
1

than with C
2

.

The proof of this corollary is straightforward. For a given schedule, both the investment

cost and the cost of a fully green fleet are lower with the cost C
1

and the associated launching

date should then be earlier.

A more demanding result would be that an increase in the learning rate induces an

earlier launching date. It does not hold in general since the optimal schedule depends on the

learning rate and Corollary 1 cannot be applied. It holds in the extreme case of no convexity:

then the deployment schedule is independent of the learning rate (Lemma 2).

2.3 The optimal trajectory revisited

The deployment approach can be used to recover the optimal trajectory described in Lemma

1. In the previous section we studied the optimal launching of a suboptimal deployment

schedule which helps define the DAC. In this section, we will show that the DAC can be

12



used to optimize the deployment schedule independently of the CO
2

price, proceeding by

steps and further decomposing the global problem. This procedure will provide intuitive

conditions on the characteristics of the deployment schedule and a criterion to evaluate

small changes of a given deployment schedule. It highlights that the influence of the CO
2

price p
0

on the optimal trajectory is solely a matter of timing: a change of the CO
2

price

modifies the launching date but not the optimal deployment schedule.

A deployment schedule is defined by (X̄,D, ⇠ = (⇠⌧ )⌧2[0,D]

) and together with the launch-

ing date Tl it gives a trajectory (xt)t2[0,+1)

. The optimal deployment schedule to be denoted

(X̄⇤, D⇤, ⇠⇤) can be described with the optimal trajectory defined in Lemma 1: X̄⇤ = X⇤
e ,

D⇤ = Te � Ts and ⇠⇤ = (x⇤
Ts+⌧ )⌧2[0,D]

which is optimally launched at T ⇤
l = Ts. This optimal

deployment schedule minimizes the total discounted cost � given by equation (8). This cost

may be rewritten using the definition of the DAC (eq. (10)) and setting Te = Tl +D:

�̃(Tl, X̄,D, ⇠) =

Z Tl+D

0

e�rt(co + pCO2

t )Ndt� p
0

X̄ + e�r(Tl+D)

⇥
erDI(X̄,D, ⇠) + ⌦(X̄)

⇤

=
c
0

N

r
+ p

0

(NTe � X̄) + e�rTe
N

r
DAC(X̄,D, ⇠). (11)

This decomposition suggests to proceed by steps by first minimizing the deployment cost of

a total quantity X̄ over D years and then optimally choosing these two aggregate character-

istics.

Lemma 3 For any triple Tl, X̄ and D the schedule ⇠ that minimizes the discounted cost

�(Tl, X̄,D, ⇠), given by eq. (8), is independent of the CO
2

price and the launching date.

This schedule minimizes the DAC subject to XD = X̄.

Once the objective to produce X̄ over D years is given, the DAC to do so should be

minimized, which is equivalent to minimizing the deployment cost I. Let us denote I⇤(X̄,D)

the minimum deployment cost:

I⇤(X̄,D) = min⇠⌧

Z D

0

e�r⌧ [C(X⌧ , ⇠⌧ )� c
0

⇠⌧ ]d⌧ (12)

s.t. Ẋt = ⇠⌧ ; 0  ⇠⌧  N and XD = X̄.

and DAC(X̄,D) = r[erDI⇤ + ⌦(X̄)]/N the corresponding DAC.
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Proposition 2 The optimal deployment schedule is such that:

(i) the duration D⇤ and the quantity of accumulated cars X̄⇤ are independent of the CO
2

price, they satisfy the couple of equations:

@DAC(X̄,D)

@D
= rI⇤ +

@I⇤

@D
= 0, (13)

N

r

@DAC(X̄,D)

@X̄
= DAC(X̄,D). (14)

(ii) the optimal launching date T ⇤
l satisfies

pCO2

T ⇤
l

= e�rD⇤
DAC(X̄⇤, D⇤). (15)

The proof is in Appendix C. This proposition calls for some comments. A decrease of the

present CO
2

price p
0

only a↵ects the launching date. This comes directly from the dynamics

of the CO
2

price: Let us consider a change from p
0

to p0
0

with p0
0

< p
0

so that the whole

trajectory of CO
2

prices is shifted. At a date T the new CO
2

price reaches the level of the

old price at date 0 (p0
0

erT = p
0

), the problem of the social planner is then simply shifted

across time and so does its solution. The optimal trajectory is then simply postponed by T .

Note that this reasoning holds with a CO
2

price that grows at any constant rate, possibly

di↵erent from the discount rate.

The optimal duration D⇤ minimizes the DAC, and thus makes a trade-o↵, described by

equation (13), between the cost of starting early (rI⇤) and the benefits of spreading the e↵ort

across time (@I⇤/@D < 0). This result is true even for a suboptimal accumulated quantity

X̄, as long as the ending date is fixed.6 Furthermore, the condition (13) implies that the

quantity of green cars at the beginning of the deployment should be null (cf Appendix C).

The optimal quantity of accumulated clean units satisfies equation (14) it does not mini-

mize the DAC because of the environmental benefit associated to abatement during deploy-

ment. The impact of X̄ on the total discounted production cost should be equalized with

the CO
2

price at the end of deployment which is itself equal to the DAC from equation (9).

6The launching date and not the ending date should adjust to the change of duration reflecting that the

DAC is a cost computed at the end of deployment.
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If the ending date is suboptimal the optimal quantity of accumulated car should be adjusted

accordingly.

Equation (14) reminds the classical result of supply theory that the minimum e�ciency

scale, which minimizes the average cost, equalizes marginal cost and average cost. At the

optimal organization of production individual production should be equal to the minimum

e�cient scale, and total production is such that the price is equal to the minimum average

cost (this latter equal to the marginal cost). The parallel with the present problem is not

straightforward because of the inter-temporal dimension of our problem, but the choice of

the launching date would correspond to the choice of the total production and the choice of

X to the choice of individual production.

The parallel can be formalized as follow, introducing the total quantity of emissions

E = NTe � X̄, and write the total discounted cost:

�̃ =
c
0

N

r
+ p

0

E + e�
r
N (E+

¯X)

N

r
DAC(X̄,D, ⇠).

The cost to end the yearly emissions flow is NDAC/r. The choice of the total quantity of

emissions makes a similar trade-o↵ than the choice of the ending date, represented by eq.

(9): a larger total quantity of emissions allows to bear this cost at later date. However, with

a fixed quantity of emissions, the consequences of a change of X̄ no longer involves the CO2

price: it has a direct e↵ect on the deployment cost (@DAC/@X̄), and also allows to postpone

the spending by 1/N years.

Concerning the evaluation of a change of a deployment trajectory, possibly sub-optimal.

It is not su�cient to only consider the e↵ect on the DAC, the change of the quantity of

accumulated car also matters. The following corollary states how both should be compared.

Corollary 2 A change of a deployment schedule that increases the accumulated green units

by �X̄ and the DAC by �DAC reduces the total discounted cost of the transition if and only

if

�DAC

DAC
<

�X̄

N/r
. (16)
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Proof. Assuming an optimal launching date, the e↵ect of a small change is (from equations

(11) and (10)):

�� = e�rTe


N

r
�DAC �DAC�X̄

�
= e�rTe

N

r
DAC


�DAC

DAC
� �X̄

N/r

�
.

Any change that reduces the DAC while maintaining the quantity X̄ fixed is beneficial.

Otherwise, the rate of change of the DAC should be compared with the ratio of the change

of accumulated abatement during the transition to the discounted flow of abatement N/r.

2.4 The impact of the CO2 price growth rate

The model allows to understand the limits of changing perspective (from a single car to the

whole technological deployment) and of the parallel between a deployment schedule and a

huge clean plant. In this section we analyze the role of the CO
2

price growth rate on the

launching date of a deployment schedule, possibly suboptimal.

The DAC, defined in Proposition 1, is theoretically valid only if the CO
2

price grows

at the interest rate, which allows to neglect interim abatement. Assuming that the CO
2

price grows at the interest rate considerably simplifies the analysis of dynamic trajectory,

by reducing to a single number p
0

the description of the whole CO
2

price path. Indeed, this

helps getting a single number to characterize a time profile of abatement. With a di↵erent

dynamic of the CO
2

price, interim abatements interact with the dynamic of the CO
2

price

and impact the launching date. This e↵ect is detailed in the following corollary.

Corollary 3 If the CO
2

price grows at the rate ⇢ 6= r, pCO2

t = p
0

e⇢t, the optimal launching

date of a deployment schedule (X̄,D, ⇠) is such that:

pCO2

T ⇤
l +D =

rIerD + (r⌦(X̄)� c
0

N)

N � (⇢� r)
R D

0

e�(⇢�r)(D�⌧)⇠⌧d⌧
. (17)

The proof is in Appendix D. If the CO
2

price does not grow at the interest rate, emissions

have di↵erent present costs depending on the date at which they are emitted which explain

that production during deployment should influence the launching date.
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Insert Figure 1

Figure 1: The CO
2

price growth rate impact on the launching and ending dates of deployment

and the corresponding CO
2

prices, with ⇢ > r.

If production during deployment is negligible, ⇠ ' 0, the CO
2

price at the end of the

deployment, described by equation (17), is equal to the DAC, and is not a↵ected by the

growth rate of the CO
2

price. The launching date is then obtained by discounting the DAC

with the CO
2

price growth rate ⇢ and not with the discount rate r which shows that the

discounting of DAC in the formula (10) is related to the dynamics of the CO
2

price.

With non negligible interim abatement, the comparison between the CO
2

price growth

rate and the interest rate determines whether later emissions are more costly than earlier

emissions and the influence of interim abatement on the launching and ending dates. The

CO
2

price at the ending date is described by equation (17); the DAC should be corrected

by subtracting a term to the yearly abatement N in the denominator. The sign of this term

is determined by the comparison between the growth rate of the CO
2

price and the interest

rate, it reflects the gain (if ⇢ > r), or cost (if ⇢ < r), to postpone interim abatement.7

Figure 1 illustrates the Corollary with ⇢ > r. If the growth rate of the CO
2

price is

larger than the interest rate. The ending CO
2

price is larger than in case of equality, given

that delaying interim abatement reduces costs. However, the launching CO
2

price is lower

than in the case of equality (cf Appendix D) because of the overall higher emission costs.

More precisely, in Appendix D, we show that an increase of the CO
2

price growth rate both

reduces the launching CO
2

price and increases the ending CO
2

price.

7Theoretically, both cases are possible: If the objective is to stabilize the concentration of CO2 in the

atmosphere, the CO2 price should grow at a higher rate than the interest rate (e.g. Goulder and Mathai,

2000). To slow the extraction of fossill exhaustible resource the growth rate of the carbon price should be

lower than the intereste rate, with constant extraction costs (e.g. Grimaud and Rouge, 2008).

17



3 Application to the case of Hydrogen versus Gasoline

cars

3.1 The proposed trajectory and the associated static abatement

costs

The application concerns the substitution of gasoline vehicles (Internal Combustion Engine

vehicles) by hydrogen vehicles (Fuel Cell Electric vehicles). Our application focuses on

Germany, a country in which some significant moves have already been made in favor of

hydrogen. We built an Excel model based mostly on the data described in McKinsey &

Company (2010). An exogenous trajectory from 2015 to 2050 generates cost dynamics

involving three main components: manufacturing costs, fuel costs and infrastructure costs

in constant e 2015 excluding value added tax (VAT). We briefly review the construction of

our trajectory and its associated cost function as summarized in Table 1.8

The total passenger car fleet in Germany is assumed to increase from today’s level of 47

million vehicles to 49.5 million in 2030. It is assumed to be stable from 2030 to 2050. Our

exogenous deployment trajectory assumes a very progressive ramp up starting in 2015 up

to a targeted market share of 15% in 2050, that is 7.5 million units for the hydrogen car

park. It is noteworthy that there is no uncertainty surrounding that long-term result, once

the deployment schedule is launched it will be sustained and will reach that target.

Hydrogen and gasoline cars are expected to have a ten year life time. The actual yearly

production of hydrogen cars takes into account the increase in market share and the renewal

of the car park. Based on this schedule one derives the cumulative production and construct

a unit manufacturing cost for a hydrogen vehicle using a learning by doing component.

We calibrate this component to approximate the actual costs obtained from McKinsey &

Company (2010). This gives a decline of 6.8% for each doubling of cumulative production,

and 62% from 2015 to 2050. The decline in the gasoline vehicle cost is assumed to be much

lower.
8For a complete discussion of our cost assumptions the reader is referred to Creti et al. (2015). The Excel

model is available from the authors upon request.
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Fuel costs are derived from the fuel prices, the energy e�ciency and the yearly kilometers,

assumed to be 15 000 km per year. Fuel price for H2 comes from a mix of technologies

(development and capital expenditures of energy producers are integrated in this cost). Three

new carbon free technologies are progressively introduced and substituted to steam methane

reforming: electrolysis based on renewable energies, bio-gas and carbon sequestration and

capture. The fuel cost for hydrogen and gasoline includes the delivery cost to the refueling

station. For gasoline prices we assume that the excise tax on imported petroleum is included

since it represents an opportunity cost for importing oil. Note that the excise tax is in

absolute value so its percentage in the gasoline price declines over time. The untaxed gasoline

price (excluding excise and value added taxes) follows the oil price in the world market,

assumed to increase at a constant rate of 1.4%. This 1.4% annual growth rate is consistent

with IEA long term projections. The average gasoline market price per liter in Germany in

2014 was equal to 1,3 e (excluding value added tax).

The cost of infrastructure is derived from the number of hydrogen refueling stations which

is derived from the required network to deliver the total hydrogen consumption at every time

period. This cost includes the capital and operating costs of a station.

The CO
2

emissions for each type of vehicle are also given. These emissions depend on

the respective energy e�ciency and the CO
2

content of each fuel. The latter is declining over

time for H2 production thanks to the progressive introduction of carbon-free technologies

while the former is improving over time for gasoline vehicle.
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Unit 2015 2020 2025 2030 2050

Market size

(car life time: 10 years, 15 000km/yr)

car park

in k unit
1 95 453 1350 7500

Vehicle manufacturing cost

Hydrogen car (maintenance 9.5% not incl.) ke 60.0 37.7 32.1 28.6 22.8

Gasoline car (maintenance 12% not incl.) ke 22.0 21.4 21.0 20.6 18.0

Relative price Hydrogen vs Gasoline % 173% 77% 53% 39% 27%

Fuel costs

Hydrogen production cost

(delivery cost to station included)
e /kg 7.0 5.8 6.1 6.3 6.8

Hydrogen consumption per 100 km kg/100km 0.95 0.87 0.84 0.80 0.70

Gasoline price e/ l 1.30 1.35 1.40 1.46 1.71

of which excise tax % 50% 48% 47% 45% 38%

Gasoline consumption per 100 km l/100km 7.04 6.8 6.5 6.3 5.8

Infrastructure costs

Number of Hydrogen Refueling Stations # 40 220 926 2234 9257

Capital cost per car (maintenance 5% not incl.) ke 62.24 2.39 2.02 1.65 1.18

CO2 emissions

Hydrogen gCO
2

/km 90 62 50 38 17

Gasoline gCO
2

/km 198 190 183 176 162

Table 1: Simplified Data Sheet

Table 2 gives the total cost of ownership (TCO) and its components for each technology

for 2020, 2030 and 2050.9 By construction the TCOs approximately converge in year 2050,

the year at which the deployment is completed. The TCOs may also be compared with the

figures obtained in Rösler et al. (2014), this is done in Table 3. The order of magnitude

is similar, our figures are somewhat higher for 2020 but the di↵erence decreases over time.

9Each cost component is obtained via Table 1 by adding the annualized capital cost, using the discount

rate and the life time for the annualized factor, and the maintenance cost, using the capital cost and the

percentage for maintenance. The Excel model is available from the authors upon request.
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Prior to 2042 the static abatement cost is positive, then it becomes negative. The very high

value obtained for 2020 is far above any reasonable assumption for a social cost of carbon at

that date (1 433 e/tCO
2

in our analysis and 1 158 e/tCO
2

based on the TCO of Rösler et al.

(2014)). This would strongly suggest that the cost for substituting hydrogen to gasoline in

2020 is far above its benefit in terms of avoided emissions. Could it still be economically

reasonable to launch the proposed hydrogen schedule as early as 2015 so as to benefit from

the avoided emissions in later years at a low cost, thanks to the learning-by-doing embedded

in the manufacturing cost of hydrogen cars?

Year 2020 2030 2050

Vehicle cost (manufacturing and maintenance)

Hydrogen 8 6.1 4.9

Gasoline 5.1 4.9 4.3

Fuel cost

Hydrogen 0.8 0.8 0.7

Gasoline 1.4 1.4 1.5

Infrastructure cost for Hydrogen 0.4 0.2 0.2

Total Cost of Ownership

TCO hydrogen 9.2 7.1 5.8

TCO gasoline 6.5 6.3 5.8

Delta TCO per vehicle 2.8 0.8 -.01

CO
2

emissions avoided tCO
2

/year 1.93 2.08 2.18

Abatement cost static approach e /tCO
2

1 433 399 -3.6

Table 2: Cost benefit analysis in ke / year per vehicle

2020 2040

Gasoline Hydrogen Gasoline Hydrogen

Rösler et al. (2014) 5.9 7.8 5.7 5.7

authors 6.5 9.2 6.0 6.2

Table 3: Comparison of the Total Costs of Ownership in ke / year per vehicle
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3.2 The dynamic abatement cost for the hydrogen deployment

schedule

We want to determine the DAC of the deployment schedule associated with the proposed

trajectory that is making the transition over a given number of years at the rate defined by

the proposed trajectory. From the DAC we shall determine the optimal launching time of

this sub-optimal schedule. Recall the result of Proposition 1:

DAC =
rI

N
erD +

r⌦(X̄)� c
0

N

N
. (18)

Our illustration does not directly fit for applying this result. Firstly, the life duration of

each vehicle is not one year but ten years, this generates a distinction between the hydrogen

car park and the annual production but this is taken into account in our calculation of the

annual cost. Secondly, the TCO and the CO
2

emissions for gasoline vehicles are not constant

over time but slightly decreasing. This means that shifting the deployment schedule over

time is not neutral with respect to the cost and emissions of the gasoline vehicles. But the

di↵erences are small and we shall neglect this impact. Thirdly in our calculation the TCOs

almost converge in 2050 and no detailed assumptions are made after this date. We shall

approximate the terminal value in the right hand side of equation (14) assuming that TCOs

remain constant afterward. Since LBD is certainly higher in FCEV than in ICE this will

lead to an over-estimation of the abatement cost.

Giving due considerations to these caveats Proposition 1 provides a first order estimate.

To compute this estimate we proceed as follows

• Time is discrete and not continuous, r stands for the yearly social discount rate; we

use 4 % as the social discount rate;

• The duration of the transition is D = Te � Tl = 35 and erD = 1.0435 = 3.94;

• As discussed above we assume that
⇥
r⌦
N � c

0

⇤
= [TCOH2

� TCOgas] /a in which a is

the di↵erence in emissions per unit of car at the end of deployment. This gives �10 e

/2.18 t/year= �3.57 e/tCO
2

.
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• In the analytical model N stands for total emissions of the dirty fleet, in the application

it is the targeted hydrogen car park Ncar times the di↵erence in emissions per unit of

car at the end of deployment. This gives 7.5M ⇥ 2.18t/year= 16.3Mt.

• The discounted cash flow for the deployment schedule, I, is obtained from our Excel

model. We have I = 21.6 bne.

Altogether this gives the following result DAC = 21.6 ⇥ 0.04 ⇥ 3.94/16.3 � 3.57 = 205

e/t. Note that we may alternatively compute the first component of the DAC as the yearly

equivalent of the investment cost per unit of the final car park that is deployed divided by

the CO
2

avoided per vehicle at that time.

To obtain the optimal launching time we discount the DAC: 205/1.0435 = 52 e/t. This

value is within most estimates of the social cost of carbon in 2015 (Tol, 2014) so that it does

not seem uneconomical to launch this sub-optimal schedule at that date.10

The di↵erence in reasoning between the dynamic and the static approaches may be

contrasted as follows. In a static approach, the TCO of hydrogen is decreasing so the static

abatement cost decreases as well, which pervades any analysis in terms of optimal time for

deployment. In a dynamic approach, a whole deployment schedule is considered. It leads to

the permanent substitution of a given car park of 7.5 M units of gasoline cars by hydrogen

cars over a period of 35 years, from 2015 to 2050. Using the results from Table 1, we

firstly observe that thanks to learning-by-doing the manufacturing cost of hydrogen cars will

decrease from 60 ke in 2015 to 22.8 ke in 2050. Over time the infrastructure cost will also

decline (Table 2). In 2050 the TCOs of hydrogen and gasoline cars will both converge to 5.8

ke (Table 2). This convergence is achieved through a deployment cost of 21.6 bne, that is

2 882 e per vehicle in the car park or 2882⇤ .04 = 115 e per vehicle per year. Over time the

avoided emissions will increase and stabilize to 2.18 t/year (Table 2). Altogether this gives

10 Estimates depend on various assumptions most notably the pure time discount rate and the convexity

of the damage function. For instance Nordhaus (2011) computes 12$ /tCO2 (in 2005 US$) and Stern

(2007) 68 $/tCO2 while Golosov et al. (2014) find 15.5 $ and 135$ with their respective discount rate. At

the country level, for France to reach its current policy objective, Quinet (2009) and Quinet (2013) suggest

around 30 e/t for 2015; for the US, the EPA provides estimates (see https://www.epa.gov/climatechange/

social-cost-carbon) the average of which is 56$ in 2015 with a 3% discount rate.
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115/2.18 = 53 e /tCO
2

for the discounted dynamic abatement cost (neglecting the impact

of terminal value which is �3.57/1.0435 = �.9 e /tCO
2

).

3.3 Sensitivity Analysis and Discussion

We first show that the proposed schedule, keeping constant the total quantity accumulated

and duration, does not minimize the investment cost. To do this we transfer a positive or

negative amount of new vehicles schedule from the latest years to earlier years within the

period 2040-2050. Based on our Excel model we find that the investment cost would decrease

with more cars being deployed earlier. This suggests that the proposed schedule is too slow.

Our Excel model does not allow to derive the optimal duration and its associated sched-

ule. For one thing we have not formalized the convexity of the cost function. As in many

applied models this feature is introduced by setting capacity constraints at the earlier stage

of deployment. Still we can test whether a shorter duration associated with less accumulated

quantity would be preferable. Consider a duration D = 25 years instead of 35 years to reach

7.5 M units at the end of the deployment. Assuming that the schedule is left unchanged over

the first 15 years our Excel model gives that the accumulated quantity would be X̄ = 8.9

M units instead of 13.4 M units. The corresponding DAC would be 139 e instead of 205 e.

Applying Corollary 2 we see that the new schedule should be preferable. Its discounted DAC

is 62 e instead of 52 e which means that it should start approximately 4 years later than the

initial schedule but that it would end approximately 6 years earlier. On the practical side

these calculations show that the optimal schedule has not a strong impact on our numerical

estimate of the optimal launching date.

The robustness of our result can also be tested through a standard sensitivity analysis.

For instance we can make a local exploration in which some parameters of the proposed

trajectory are marginally changed. More precisely we identify the change in each parameter

that would be consistent with a given targeted discounted adjustment abatement cost say of

30 e/t versus 80 e/t in 2015, a reasonable range for launching the deployment schedule in

2015. Our sensitivity analysis concerns the three parameters which are the most important:

the market size of FECV in the total car park in 2050, the growth rate for the gasoline price,

the learning rate for manufacturing costs. The detailed results of this analysis are given
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Table 4. This sensitivity analysis suggests that our estimate of 52 e/t is fairly robust.

Discounted DAC Market share Gasoline price Learning rate

scenario e per tCO
2

% of total market % annual growth rate

% decrease
every doubling
of cumulative
production

high 80 12 0.7 6.6

base 52 15 1.4 6.8

low 30 18 0.7 6.9

Table 4: Evolution of the discounted dynamic abatement cost with respect to the main

parameters

Overall our analysis suggests that the deployment of hydrogen vehicles in 2015 to substi-

tute gasoline vehicle is economically founded, giving the learning by doing in costs and the

future benefit in reducing emissions. However a number of caveats should be pointed out. A

long and progressive deployment schedule is necessary to achieve the cost reduction. Indeed

2050 is far away in the future and many factors not taken into account here may comfort or

alleviate our conclusion. It would greatly help to obtain a much faster cost reduction in the

production of hydrogen vehicles and a much faster decarbonisation of hydrogen production

at a reasonable cost. In the current context of low carbon market price the actual deployment

depends on substantial public policies both for infrastructure and demand side subsidies.

We have also considered that hydrogen and battery electric vehicles compete on di↵erent

market segments: long range large cars for the former and low medium range for the latter.

One of the reasons for this is the current limited autonomy and the long refilling time

for BEV. Technical breakthroughs in battery conception and production may invalidate

this assumption. In this respect one may also need to look at the whole value chain from

electricity production to consumption and take into consideration the indirect benefits of H2

versus battery in terms of electricity storage.

Finally one may also consider that the increased awareness about pollution problems

in cities will strongly encourage the introduction of zero emission vehicles including motor-

bikes, buses, trucks, trains... and that this social pressure will generate a complete change
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in behavioral habits leading to a reshu✏ing in modes of transportation. To really assess

the validity of our conclusion our cost benefit analysis should be embedded into a more

prospective scenario.

4 Conclusion

The main contribution of the paper consists in designing a decomposition methodology to

disentangle the choice of the production schedule from the choice of the launching date in

the search of the optimal trajectory. This leads to two interesting results. Firstly we extend

the standard static notion of abatement cost associated to the substitution of a dirty unit by

a clean one at some point of time to a dynamic abatement cost in which the all deployment

trajectory is globally considered from its launching date. Second this dynamic abatement

cost is also meaningful for a second best trajectory, which is often the case in applications

where trajectories are defined through industrial and social considerations outside the scope

of the modeling exercise. These results provide a simple framework for policy guidance. This

is illustrated through an analysis of a trajectory in which gasoline vehicle (a.k.a. Internal

Combustion Engine) are progressively replaced by hydrogen vehicle (a.k.a. Fuel Cell Electric

Vehicle).

It would be interesting to extend this approach in several directions. From a theoretical

point of view the dependence of the launching date on the learning rate for the optimal

trajectory is worth to clarify (possible generalization of Corollary 1). Our decomposition

methodology relies on a number of stationary assumptions which may be revisited in search

for possible theoretical extensions. Indeed in the FECV case we have assumed that the

minor e�ciency gains in gasoline vehicle and the time increase in gasoline fuel costs do not

invalidate the derivation of a dynamic abatement cost; this would be worth further work. A

more elaborate extension would consider the simultaneous deployment of alternative clean

technologies such as battery electric vehicle and hydrogen vehicle to be substituted to gasoline

vehicle. This may possibly involve the introduction of consumers’ preferences in which the

role of product di↵erentiation could be analyzed. Furthermore, our approach is optimistic,

in that we assume that once the deployment starts, it is sustained all along the trajectory.
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To be more realistic, uncertainty about consumers tastes and competing technologies costs

should be introduced.

Another interesting extension would be to consider the decentralization issue of the op-

timal trajectory to the various players (manufacturers, H2 producers, network operators).

These players need operate under a positive profit constraint assumptions. We have assumed

an exogenous normative CO
2

price. There is no guaranty that the transfer of external ben-

efit to the players can be enough to accommodate the positive profit constraints. Defining

more operational policy instruments could be examined such as imposing a minimal rate of

clean cars in the portfolio of manufacturers. We think that some answers to these various

questions could be obtained while preserving the simplicity of our approach.
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Rezai, A. and van der Ploeg, F. (2015). Robustness of a simple rule for the social cost of

carbon, Economics Letters 132: 48 – 55.

URL: http://www.sciencedirect.com/science/article/pii/S0165176515001573

29



Rosen, S. (1972). Learning by experience as joint production, The Quarterly Journal of

Economics pp. 366–382.

Rösler, H., van der Zwaan, B., Keppo, I. and Bruggink, J. (2014). Electricity versus hydrogen

for passenger cars under stringent climate change control, Sustainable Energy Technologies

and Assessments 5: 106–118.

Schennach, S. M. (2000). The economics of pollution permit banking in the context of Title

IV of the 1990 Clean Air Act Amendments, Journal of Environmental Economics and

Management 40(3): 189–210.

Stern, N. H. (2007). The economics of climate change: the Stern review, cambridge University

press.

Thompson, P. (2010). Learning by doing, Handbook of the Economics of Innovation 1: 429–

476.

Tol, R. S. (2014). Climate economics: economic analysis of climate, climate change and

climate policy, Edward Elgar Publishing.

Van den Bijgaart, I., Gerlagh, R. and Liski, M. (2016). A simple formula for the social cost

of carbon, Journal of Environmental Economics and Management 77: 75–94.

Vogt-Schilb, A., Meunier, G. and Hallegatte, S. (2012). How inertia and limited potentials

a↵ect the timing of sectoral abatements in optimal climate policy, World Bank Policy

Research Working Paper (6154).

Zachmann, G., Holtermann, M., Radeke, J., Tam, M., Huberty, M., Naumenko, D. and

Faye, A. N. (2012). The great transformation: decarbonising Europe’s energy and transport

systems., Bruegel Blueprint 16.

30



Appendix

A Proof of Lemma 1

Proof. To minimize the total cost (2), let us introduce �t the co-state variable associated to

the relation (3), and ✓t and �t the Lagrange multipliers associated to the two constraints (4)

on xt: it is positive (✓t) and smaller that the total fleet size (�t). The first order conditions

(together with the complementarity slackness conditions) are:

Cx(Xt, xt)� co = pCO2

t + �t + ✓t � �t (19)

�̇t � r�t = CX(Xt, xt). (20)

The main step of the proof consists in proving that xt is increasing if xt 2 (0, N). This

condition ensures that once xt > 0 the number of green cars cannot come back to zero, and

that xt does not move when xt = N . If xt is strictly positive (✓t = 0) and lower than the

total car fleet (�t = 0), equation (19) becomes Cx(Xt, xt) � co = pCO2

t + �t and taking the

time derivative:

CxXẊt + Cxxẋt = ṗCO2

t + �̇t

CxXxt + Cxxẋt = ṗCO2

t + r�t + CX thanks to eq. 20

Cxxẋt = ṗCO2

t + r�t + [CX � CxXx]

The last term of the right hand side is positive because CX(X, x) is concave with respect to

x and CX(X, 0) = 0 (since C(X, 0) = 0, 8X). Since Cxx, pCO2

t and r are all positive, ẋ is

also positive so that xt is increasing through time.

Then, since the CO
2

price increases exponentially, xt cannot be always null along an

optimal trajectory. Then either x
0

= 0 or x
0

> 0. In the latter case Ts = 0, whereas in the

former case Ts is the inf of the dates at which xt > 0.

The ending date is finite, Te < +1: From the above proof, when xt is positive its time

derivative is bounded below by a positive number, so xt necessarily reaches N in a finite

time.

Finally, equation (5) is obtained by integrating equation (20), between t and +1 (and
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using the boundary conditions limt!+1e�rt�t = 0):

�t = �
Z

+1

t

e�r(⌧�t)CX(X⌧ , x⌧ )d⌧ (21)

and injecting this expression into equation (19).

B Proof of Lemma 2

Proof. If Cxx = 0, given that C(X, 0) = 0, CX(X, x) = CXx(X, x)x. Then, we resort by

reductio ad absurdum assuming Ts < Te. Between the two dates the equation (5) is satisfied

and taking its derivative with respect to t gives:

ṗCO2

t = CXxẊt + Cxxẋt � �̇t

= CXxxt + 0� [r�t + CX ] using eq. (20)

= CXxxt � CX + r

Z
+1

t

e�r(⌧�t)CX(X⌧ , x⌧ )d⌧

�
from (21)

Therefore, using that CX(X, x) = CXx(X, x)x in that case,

0 < ṗCO2

t = r

Z
+1

t

e�r(⌧�t)CX(X⌧ , x⌧ )d⌧

�
 0

a contradiction.

Therefore, the number of green cars jumps from 0 to N at date Ts = Te, and the total

discounted cost � could be written as a function of the date Ts:

� =

Z Ts

0

e�rt
⇥
(pCO2

t + co).N
⇤
dt+ e�rTs⌦(0)

Along the optimal trajectory, Ts should minimize this function. Taking the derivative with

respect to Ts in the equation above and setting it equal to zero gives the equation (6).

C Proof of Lemma 3, Proposition 2

From Lemma 1, the optimal trajectory (x⇤
t )t2[0,+1)

can be described as the launching of

a deployment schedule. There is therefore no loss to minimize the cost over the set of
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trajectories defined as the launching (and ending) of a deployment schedule. The trajectory

obtained from the optimal launching of the optimal deployment schedule coincides with the

optimal trajectory described in Lemma 3.

C.1 Proof of Lemma 3

Proof. Using the decomposition of the total discounted cost � provided by equation (11),

the schedule ⇠ only influences the DAC and no other component of the cost. So that the

⇠ that minimizes � corresponds to the ⇠ that minimizes the DAC. A deployment schedule

(X̄,D, ⇠) and its DAC are only defined for ⇠ such that
R D

0

⇠⌧d⌧ = X̄. The optimal ⇠, for a

given X̄ and D, is then the solution of the optimization program:

min
⇠⌧

Z D

0

e�r⌧ [C(X⌧ , ⇠⌧ )� c
0

⇠⌧ ]d⌧ (22)

s.t. Ẋt = ⇠⌧ ; 0  ⇠⌧  N and XD = X̄.

This result holds for any X̄, D and Tl.

It is interesting to write the equations satisfied by ⇠ in order to recover the optimality

conditions (5) satisfied by the optimal trajectory. Write the Lagrangian:

L = e�r⌧ [C(X⌧ , ⇠⌧ )� co⇠⌧ ]� µ⌧⇠⌧ � ✓⌧⇠⌧ � �⌧ (N � ⇠⌧ )� ↵⇠⌧

in which µ⌧ is the co-state variable of Ẋ = ⇠⌧ ; �t and ✓t are the Lagrange multiplier of ⇠⌧  N ;

and ⇠⌧ � 0 respectively, and ↵ is the Lagrange multiplier of the constraint
R D

0

⇠⌧d⌧ = X̄.

The optimal ⇠ satisfies the equations:

e�r⌧
⇥
Cx(X⌧ , ⇠⌧ )� c

0

⇤
+ �⌧ � ✓⌧ = µ⌧ + ↵

µ̇⌧ = e�r⌧CX(X⌧ , ⇠⌧ ), µD = 0

�⌧ (N � ⇠⌧ ) = 0, ✓⌧⇠⌧ = 0

Then, ⇠⌧ is increasing (similar reasoning than for the proof of Lemma 1), and integrating

the second equation gives

e�r⌧ [Cx(X⌧ , ⇠⌧ )� c
0

] + �⌧ � ✓⌧ = ↵�
Z D

⌧

e�rsCX(Xs, ⇠s)ds (23)
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Together with the optimality conditions satisfied by X̄⇤, D⇤ and T ⇤
l , to be studied below,

these first order conditions will coincide with 5. However, even for suboptimal X̄ and D the

schedule ⇠ should satisfies these equations, which then gives the minimized deployment cost

I⇤(X̄,D) and the associated DAC(X̄,D). The derivative of the deployment cost are:

@I⇤

@X̄
= ↵ = e�rDCx(X̄, ⇠D)� c

0

+ �D (24)

@I⇤

@D
= e�rD

⇥
C(X̄, ⇠D)� c

0

⇠D
⇤
� ↵⇠D

= e�rD
⇥
C(X̄, ⇠D)� c

0

⇠D
⇤
�

h
e�rD

⇥
Cx(X̄, ⇠D)� c

0

⇤
+ �D

i
⇠D (25)

C.2 Proof of Proposition 2

There are two possible strategies to prove that X̄⇤ and D⇤ are independent of the CO2 price

p
0

. One is sketched in the main text. The other consists in looking at first order conditions

and showing that the optimal duration and accumulated quantity satisfy a pair of equation

independent from the CO
2

price.

Proof. From the expression (11) of the total discounted cost, the optimal D⇤, X̄⇤ and

launching date satisfy the equations :

rI⇤ +
@I⇤

@D
= 0

erD
@I⇤

@X
+

@⌦

@X
= p

0

erTe

p
0

erTe =
1

N

⇥
rerDI⇤(X̄,D) + r⌦(X̄)� c

0

N
⇤
using eq. (10) (26)

The first equation corresponds to equation (13), the third correspond to (15). And

injecting the third into the second gives equation (14) satisfied by X̄⇤.

The two equations (13) and (14) are independent of the CO
2

price or the launching date,

the couple X̄⇤ and D⇤ is therefore independent of p
0

, and so is the optimal deployment

schedule (⇠⇤⌧ )⌧2[0,D]

associated to them.

In addition, it is interesting to see how these equations together with equations (23) give

back the equations (5).

From equations (14) and (24):

@I⇤

@X̄
= ↵ = p

0

erTe � @⌦

@X̄
= p

0

erTe �
Z

+1

Te

er(t�Te)CX(X̄ + tN,N)dt
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so that for ⇠⌧ 2 (0, N) the equation (23) is equivalent to equation (5) with ⇠⌧ = xTs+⌧ .

Furthermore, one can show that equation (14) leads to ⇠D = N and that equation (13)

leads to ⇠
0

= 0. This relatively fastidious proof is available upon request.

D Growth rate of the CO2 price

Proof of Corollary 3.

Proof. The total discounted cost should be written:

�(Tl) =

Z Tl+D

0

e�rt(co + pCO2

t )Ndt+ e�rTlI + e�r(Tl+D)⌦(X̄)

� p
0

Z Tl+D

Tl

e(⇢�r)t⇠t�Tl
dt

which is similar to (8) except that the second line above, the value of interim abatement,

replaces p
0

X̄. The derivative of the second line with respect to Tl is (after an integration by

parts):

�p
0

Z Tl+D

Tl

(⇢� r)e(⇢�r)t⇠t�Tl
dt = �(⇢� r)pCO2

Tl+De
�r(Tl+D)

Z D

0

e(⇢�r)(t�D)⇠tdt

so that the derivative of the discounted cost with respect to Tl is

@�

@Tl
= e�r(Tl+D)


(co + pCO2

Tl+D)N � rIerD � r⌦(X̄)� pCO2

Tl+D(⇢� r)

Z D

0

e(⇢�r)(t�D)⇠t

�
dt

This derivative is equal to zero at the optimal launching date (the second order condition is

satisfied) which gives equation (17).

The following result is proved:

Result The ending (resp. launching) CO
2

price of scenario (⇠⌧ )⌧2[0,D]

is increasing (resp.

decreasing) with respect to ⇢ if ⇠
0

= 0 and ⇠0⌧ > 0.

Proof.

We denote ⇠0⌧ the derivative with respect to time of ⇠⌧ .

The ending CO
2

price is given by equation (17). The derivative of its denominator with
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respect to ⇢ is:

Z D

0

((⇢� r)(D � ⌧)� 1)e�(⇢�r)(D�⌧)⇠⌧d⌧

=
⇥
(D � ⌧)e�(⇢�r)(D�⌧)⇠⌧

⇤D
0

| {z }
=0

�
Z D

0

(D � ⌧)e�(⇢�r)(D�⌧)⇠0⌧d⌧

| {z }
<0

so the ending CO
2

price is increasing with respect to ⇢.

The launching CO
2

price is:

pCO2

T ⇤
l

=
rI + (r⌦(X̄)� c

0

N)e�rD

Ne(⇢�r)D � (⇢� r)
R D

0

e(⇢�r)⌧⇠⌧d⌧
(27)

The derivative of the denominator with respect to ⇢ is

DNe(⇢�r)D �
⇥
⌧e(⇢�r)⌧⇠

⇤D
0

+

Z D

0

⌧e(⇢�r)⌧⇠0⌧d⌧

=D(N � ⇠(D))e(⇢�r)D +

Z D

0

⌧e(⇢�r)⌧⇠0⌧d⌧ > 0

so, the launching CO
2

price is decreasing with respect to ⇢.
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