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Why conditional subsidies for risky innovative green
projects should be prefered to ßat subsidies

Guy Meunier and Jean-Pierre Ponssard!

N ovember 2018

Abstract

The energy transition requires the deployment of risky programs in
research and development, the vast majority of which being partially
Þnanced by public funding. This paper analyzes the potential bene-
Þt of using conditional subsidies. The relationship between the state
and innovative Þrms is formalized in the principal agent framework.
Investing in an innovative project requires an initial observable capi-
tal outlay. We introduce asymmetric information on the probability
of success, which is known to the Þrm but not to the state agency.
Furthermore the Þrm may inßuence this probability through an un-
observable e!ort. The outcome of the project, if successful, delivers a
private beneÞt to the Þrm and an external social beneÞt to the state.
We prove that rewarding failure is a superior strategy in presence of
pure adverse selection while rewarding success is superior in presence
of pure moral hazard. We also identify conditions in which both forms
of subsidies should be implemented. We discuss the beneÞt of condi-
tional subsidies relative to ßat subsidies as well as the remaining gap
relative to the Þrst best solution. Our analytical results are interpreted
in view of a 10 B e investment program launched in France in 2010
to promote R&D for the energy transition over the period 2010-2020.
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1 Introduction

We analyze the optimal way to subsidize a risky innovative project with
scarce public funds. A project can generate both private and (external) so-
cial beneÞts, but requires an initial funding. The regulatory intervention is
justiÞed by the external social beneÞts. Indeed, it is common to consider
that innovation activities have positive spillovers of multiple sorts that jus-
tify subsidies at the various stages of the innovation process. Notably, pilot
and demonstration plants are a key step between the lab and the industrial
scaling, but they are risky and capital intensive activities. Even though the
analysis developed is general, the present work is motivated by the transi-
tion to a low-carbon economy. Various policies involving di!erent forms of
subsidies have been used to promote such programs.

The policies actually implemented typically exhibit some ad hoc features.
The gray literature has emphasized a number of pitfalls. For instance the
allocation of subsidies in the Clean Development Mechanisms is based on
a counter-factual that deÞnes baseline emissions.1 This opens the room for
Þnancing projects that would have been deployed anyway (Gillenwater and
Seres; 2011; Greiner and Michaelowa; 2003). Another example concerns the
promotion of renewable energy such as solar. Governments have been late
in recognizing the decline in costs so that many projects also beneÞted from
windfall proÞts (Brown; 2013). The REDD program has also been critically
examined in this respect (Pirard; 2008).2 More recently, in order to Þnance
the energetic transition under tight governmental budget constraint, Aglietta
et al. (2015) have proposed a scheme based on government-backed loans that
otherwise would not satisfy the regulatory rules imposed on the Þnancial
capital market, again opening the room for windfall proÞts.

This paper formalizes such situations using the principal agent framework
(La!ont and Martimort; 2002), the principal being the agency acting on
behalf of the state and the agent being the Þrm which carries over the project.
The Þrm invest in a project that may succeed or fail, the probability of success

1The Clean Development Mechanism is a ßexible mechanism in the Kyoto protocol,
that allows covered (Annex I) countries to satisfy part of their abatement objective by
investing in low-carbon projects (e.g. renewable electricity) in uncovered (non-Annex I)
countries.

2The REDD (Reducing Emissions from Deforestation and Forest Degradation), or
REDD+, program allows to monitor and evaluate mitigation beneÞts from forest con-
servation in developing countries.
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depends upon the type of the project and the e!ort of the Þrm. The type is
known by the Þrm but not by the agency and the e!ort is non contractible.
The agency can propose a couple of non-negative subsidies in case of success
or failure.

From a welfare point of view one needs to balance a selection bias (induce
investments in projects in as much as they are socially valuable) with a risk for
windfall proÞts (allocate funds to projects that would have been undertaken
anyway) while at the same time getting the highest possible beneÞt for the
funds allocated by the agency. We show that the e!ort exerted by the Þrm
for the optimal scheme is lower than the Þrst best e!ort so that less projects
are selected (Proposition 1). A qualitative typology of projects is provided.
Rewarding failure appears more suitable when uncertainty on the type of
the Þrm is wide and ßat and e!ort costly so that the risk of windfall proÞts
prevails (Proposition 2). When the uncertainty is concentrated on low type
Þrms (i.e. ine"cient) and the cost of e!ort is low rewarding success will
be more proÞtable. This typology leads to benchmark situations in which
we provide a full characterization of the optimal scheme: reward failure for
pure adverse selection situations (Proposition 4) and reward success for pure
moral hazard ones (Proposition 5). We study in details a situation in which
both adverse selection and moral hazard prevail and show how the optimal
scheme progressively shifts from rewarding success to rewarding failure as a
function of the distribution of types (Proposition 6). In all cases the optimal
scheme performs much better than ßat subsidies. The gap relative to the
Þrst best solution is identiÞed.

Several articles deal with the issue of Þnancing green projects under
asymmetric information. Fischer (2005) provides an insightful analysis of
the issue of ÒadditionalityÓ in the design of CDM design.3 Mason and
Plantinga (2013) consider the optimal design of contracts for carbon o!sets
with asymmetric information. Within the agricultural sectors, the design of
agri-environmental schemes raises similar issues (e.g. Wu and Babcock; 1996;
Engel et al.; 2008), and a related concerns is ÒstackingÓ of green payments:
a farmer maybe rewarded twice, for biodiversity and greenhouse gases reduc-
tion for the same action (Woodward; 2011; Lankoski et al.; 2015). To our
knowledge, the issue of windfall proÞts from innovative risky green projects
has not been studied.4

3Zhang and Wang (2011) empirical analysis does cast some doubt about the addition-
ality of Chinese CDM.

4There is a large literature on the coordination between environmental and innovation
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From a more theoretical perspective, our analyzes lies at the intersec-
tion of several strands of the literature: optimal second best taxation with
externalities, and mechanism design with both adverse selection and moral
hazard.5 In this respect our model features a risk-neutral principal and a risk
neutral agent, and constrained incentive schemes. The principal (the agency)
is constrained to propose a single couple of non-negative subsidies. A key
element of our analysis is that some projects would be Þnanced without the
scheme, making the participation constraint dependent on the type.

Some papers have introduced some of these restrictions. Lewis and Sap-
pington (2000a,b) considered mixed models with wealth constrained agents
(see QuŽrou et al.; 2015, for a recent contribution). La!ont (1995) and Hiri-
art and Martimort (2006b,a) analyze the regulation of environmental risk
under limited liability. Interestingly, the optimal design of students loan
studied by Gary-Bobo and Trannoy (2015) exhibits some features similar to
our results: the students are ask to reimburse their loans in case of success
but not failure. However, it comes from an insurance motive due to the risk
aversion of students.

Ollier and Thomas (2013) introduces ex-post participation constraint (the
Þrm should recover its cost even if the project fails) in a mixed model rel-
atively similar to ours.6 They notably show that because of countervailing
incentives pooling is optimal and the principal should only reward success.
Which is the case in our setting when moral hazard issues dominate, that is,
when one type is much more probable than the other. Otherwise, with the
present model there are situations in which both subsidies are used or only a
reward in case of failure. The key di!erence is the absence of a Þxed cost in
Ollier and Thomas (2013) which limits adverse selection issues: there is no
need to Þnance low proÞtability projects but only motivate e!orts.

The literature on optimal taxation and externalities (Sandmo; 1975; Boven-
berg and de Mooij; 1994; Cremer et al.; 1998; Cremer and Gahvari; 2001)
considers modiÞed Pigouvian rules in second best setting, whether ˆ la Ram-
sey or Mirrless. Depending on the instruments available and constraints

policy in dynamic models, most notably endogenous growth models (see Smulders et al.;
2014, for a survey). Subsidies for clean innovation are constant research subsidies, the
details of the innovation policies are not studied, a recent exception being Gerlagh et al.
(2014) who study green patents length.

5Mixed models are covered in chapter 7 in La!ont and Martimort (2002).
6In subsection 5.2. they replace the ex-post participation constraint by a limited lia-

bility constraint, making their model closer to ours.
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considered (notably on the shape of the income tax) the optimal tax di!ers
from the Pigouvian one. The fact that in our setting the optimal scheme
does not consist in setting a reward equal to the marginal positive exter-
nality could be interpreted as the result of a second best situation in which
public funds are costly and taxation incomplete, the proÞt of the successful
Þrm cannot be taxed because of the constraint on the instruments.

Finally, it would be interesting for future research to incorporate the dy-
namic aspects of innovation and decompose a project in several technical
steps that need be completed. The timing of these steps and the determi-
nation of a stopping time, a time at which a project is abandoned, would
be worth analyzing. To such end the burgeoning literature on experimen-
tation of new ideas under asymmetric information could be inspiring (e.g.
Bergemann and Hege; 1998, 2005).

The rest of the paper is organized as follows: In Section 2 the general
model is introduced and some general results derived. Section 3 analyzes
in details two benchmark situations: the beneÞt of rewarding failure in case
of pure of adverse selection and the beneÞt of rewarding success in case of
pure moral hazard. Section 4 discusses an illustrative exemple in which both
issues are present and shows how a combination of rewarding success and
rewarding failure may prevail. Section 5 discusses policy implications of our
results in the context of a state aid program to foster innovation for the
energy transition launched in France in 2010. Some research extensions are
suggested.

2 The general model with adverse selection
and moral hazard

Consider the following situation. A given innovative project may or may not
be initiated by a Þrm (the agent). If the project is initiated the Þrm incurs
a Þxed costF , and can make additional e!ortse ! [0, 1] at a cost f (e, !).
The project either succeeds or fails. The probability of success depends on
the e!ort of the Þrm e and its type ! ! [0, 1]: p(e, !) ! [0, 1], and p(0, ! ) = ! .

In case of success the Þrm gets a private revenueR and a social external
beneÞtb is generated. In case of failure neither private nor external beneÞts
are created. If a project is not initiated the reference payo!s are zero and no
Þxed cost is incurred.
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The regulatory agency (henceforth the agency) knows F , R and b. Neither
the type ! of the firm nor its e�ort are observed by the agency. Both the
agency and the firm observe whether a project is initiated or not, and if it is
a success or a failure.

The subsidy, if any, may only depend on the outcome of a project, i.e.
whether it is a success or a failure. The subsidy is s1 in case of success and
s2 in case of failure. They are non negative. More precisely, without loss of
generality, we certainly have:

0 ! s1 ! b

0 ! s2 ! F

We shall refer to S+ as this constrained class of incentive schemes (s1, s2),
this will define our second best approach. For the sake of comparison we shall
also identify the first best solution and investigate whether or not it can be
achieved by an incentive scheme in which these nonnegativity constraints do
not hold. The corresponding call of schemes would then be denoted as S.7

2.1 The model

The timing is the following:

1. Nature selects ! " [0, 1]. Types are distributed according to the cu-
mulative distribution function G(! ), continuously di�erentiable with
G!(! ) = g(! ).

2. The agency proposes a couple of non-negative subsidy (s1, s2): s1 if
success and s2 if failure.

3. For all ! " [0, 1], a firm of type ! decides whether to accept the scheme
and initiate the project at a fixed cost F and further exerts an e�ort
e " (0, 1) at a cost f (e, !).

4. The probability of success is p(e, !).

¥ If success: The firm gets a non negative private return R plus the
subsidy s1 The agency gets the non negative social benefit bminus
the subsidy s1

7The introduction of menus is only indirectly considered in Appendix C.3.
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¥ If failure: The agency gives the subsidys2 to the Þrm.

The expected proÞt of a! Þrm if it initiates the project and exert an
e!ort e is

" (e, !, s1, s2) = p(e, !)(R + s1) + (1 ! p(e, !))s2 ! (F + f (e, !)) (1)

so that the project is initiated if maxe! (0,1) " (e, !, s1, s2) > 0. Let the variable
#(!, s 1, s2) " { 0, 1} represents the initiating decision: it is equal to1 if the
project is initiated and 0 otherwise. The total industry proÞt is

!( s1, s2) =
⁄ 1

0
#(!, s 1, s2) max

e
" (e, !, s1, s2)g(! )d! (2)

The expected surplus of the agency if the project is initiated writes:

v(e, !, s1, s2) = p(e, !)(b! s1) ! (1 ! p(e, !))s2 (3)

The agency selects(s1, s2) ignoring the type ! of the Þrm and maximizes:

V =
⁄ 1

0
v(e, !, s1, s2)#(!, s 1, s2)g(! )d! (4)

Welfare is the sum of the agency surplus and Þrm proÞts:

w(e, !) = v + " = #[p(e, !)(R + b) ! F ! f (e, !)] and W = V + ! (5)

The model might be rewritten so that the cost is a function of the prob-
ability and the type of the project: Denote $(p, ! ) the cost, on top of F ,
that ensures that a project of type! succeeds with probabilityp. It sat-
isÞes$(p, ! ) = f (e(p, ! ), ! ) with e(p, ! ) deÞned by the implicit equation
p(e(p, ! ), ! ) = p. The assumptionp(0, ! ) = ! gives$(!, ! ) = 0 .

To get fully explicit expressions we will make use of the following linear
speciÞcation:

p(e, !) = ! + e(1 ! ! ) (6)

f (e, !) = (1 ! ! )
%
2

e2 (7)

This formulation can be motivated by considering that a project is con-
stituted of a continuum of technical steps, for a project of type! a share!
of steps have already been completed (in the lab) and(1 ! ! ) steps remain
to be completed (with the pilot) to guarantee success.
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With this formulation, a given level of e!ort has a larger impact on
projects with an initially low probability of success, but it is more costly.
Rewriting cost as a function of the probability of success gives:

! (p, ") =
#
2

(p ! " )2

1 ! "
, for p > ", 0 otherwise

which satisÞes the technical assumptions in Ollier and Thomas (2013). It
is increasing with respect top and decreasing with respect to" , the cross
derivative is negative (the marginal cost to increase the probability of success
is decreasing with the type), which ensures that the probability of success
is decreasing with the type, for a given bonus. Indeed, with this quadratic
speciÞcation the e!ort exerted will only depends on the bonuss = s1 ! s2.

The situation without any subsidy will be refered as BAU (business as
usual), the Þrst best as FB and the second best as SB. The corresponding
functions will be denoted with an exponant. For instance" BAU denotes the
lowest type such that ! BAU > 0. Several assumptions are further required
to ensure that the problem at hand is interesting:

Assumption 1 Some projects are proÞtable without subsidies:! BAU > 0 so
that F < R .

Assumption 2 The BAU e!ort is such that 0 " " BAU " 1 henceR2 " 2F#
and F " R.

Assumption 3 The Þrst best e!ort is less than 1:# > R + b.

2.2 First Best
The First Best is deÞned as the selection of projects and the e!orts for each
selected project that maximize welfare. The e!orteF B (" ) maximizes the
expected welfare net of the cost for a project of type" , if within (0, 1) it
solves

pe(e, ")(R + b) = f e(e, ").

With the quadratic speciÞcation, the level of e!ort does not vary with" . It
is:

eF B = ( R + b)/# (8)

All projects with
p(eF B , " )(R + b) # F + f (eF B , " )
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are initiated. Hence there is a◊F B such that all projects with ◊ > ◊F B are
initiated. If ◊F B is positive it solvesp(eF B , ◊F B )(R + b) = F + f (eF B , ◊F B ),
the expected welfare gain from the marginal project is equalized with its cost.

The Þrst best can be implemented withs1 = b and s2 = 0, which cor-
responds to a Pigouvian subsidy.8 However, the agency surplus is not max-
imized, and Þrms get a rent. If the agency were able to tax proÞts with a
proportional tax then a 100% proÞt tax realigns the agency objective with
social welfare (V = W and ! = 0 ), and s1 = b both implements the Þrst best
and maximizes the agency surplus (V = W F B ), information asymmetry is
then irrelevant. This result resonates with the fact that in a Ramsey optimal
taxation framework the optimal corporate tax on pure proÞt is 100% (Munk;
1978) . And the present framework can be interpreted as an optimal taxation
exercise with equity concerns but a limited set of instruments.

2.3 Second Best

For any subsidy couple(s1, s2) we have0 < R + s1 ! s2 sinces2 " F < R "
R + s1. It follows that fi(e, ◊, s1, s2) is increasing with respect to◊ so that
there is a threshold project÷◊(s1, s2) such that all projects with a type above
the threshold are initiated. The e!ort is a function of the bonuss = s1 ! s2

alone such thatpe(R + s) = fe. Since“ > R + b and b > s1 > s1 ! s2 we get:

e(s) = ( R + s)/“ (9)

And ÷◊ is the solution offi(e, ÷◊, s1, s2) = 0 , that is:

p(e, ◊)(R + s1 ! s2) + s2 ! (F + f (e, ◊)) = 0 (10)

The agency surplus is:

V =
! 1

÷!
[p(e, ◊)(b ! s1) ! (1 ! p(e, ◊))s2]g(◊)d◊ (11)

So that the choice of any of the subsidiess1 and s2 has three e!ects:
(i) on the selection of projects via its inßuence on÷◊, (ii) on the e!ort via
s1 ! s2, (iii) on the total expected transfer to Þrms. As is usual in agency
problems the agency trades-o! e"ciency with rents. Since both the selection
of projects and the e!ort exerted depend on e"ciency, the level of e"ciency

8The fixed cost F does not by itself justify the implementation of a subsidy because
projects are infinitesimally small.
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inßuences total welfare and not only its allocation among the agency and
Þrms.

It is illuminating to isolate the selection of projects from the precise design
of subsidies. Instead of considering the two variabless1 and s2, we rewrite
the proÞt of the Þrm and agency surplus as functions ofs and ÷! . Injecting
equation (10) into the expression (1) gives the proÞt of a Þrm as function of
s and ÷! :

" = [ p(e, !) ! p(e,÷! )](R + s) ! [f (e, !) ! f (e,÷! )] (12)

And,with a slight abuse of notation, the agency surplus can be rewritten :

V(s, ÷! ) =
! 1

÷!

"
[p(e, !)(R + b) ! (F + f (e, !))]

! [p(e, !) ! p(e,÷! )](R + s) + [ f (e, !) ! f (e,÷! )]
#
g(! )d! (13)

For a given ÷! a change ofs as the following e!ect on the agency surplus:9

#V
#s

=
! 1

÷!
[pe(R + b) ! f e]e!(s)dG(! ) !

! 1

÷!
[p(e, !) ! p(e,÷! )]dG(! )

=
! 1

÷!
[pe(b! s)]e!(s)dG(! ) !

! 1

÷!
[! ! ÷! ]dG(! )(1 ! e)

=
1
$

! 1

÷!

"
(1 ! ! )(b! s) ! (! ! ÷! )($ ! R ! s)

#
g(! )d! (14)

The Þrst line makes use ofpe(R + s) = f e for all ! which cancels the
inßuence ofs via e on the second line of eq. (13). In the second line,f e is
replaced bype(R + s) for all ! , and the third line makes use of equation (9).

There are two e!ects: e!ort is increased (Þrst term) and the expected
subsidy transferred to Þrms is increased (second term). The expected subsidy
is increased because a high type Þrm is more likely to succeedp(e, !) >
p(e,÷! ) and get the s1 subsidy. So any change of the scheme that transfers
subsidy from failure to success while keeping constant the expected subsidy
of the threshold Þrm has a positive e!ect on the expected subsidy of initiated
projects. This gives the following proposition which characterizes the optimal
second best threshold! SB .

9A change ofs that keeps ÷! Þxed is equivalent to a change ofs1 and a corresponding
change ofs2 with ds = ds1 ! ds2, and from eq. (10) we getp(e, ÷! )ds1 +(1 ! p(e, ÷! ))ds2 = 0 .
A change of ÷theta for a given s only necessitates a change ofs2 exactly o!set by a change
of ds1 = ds2.

10



Proposition 1 The optimal couple(s+
1 , s+

2 ) is such that the bonuss+
1 ! s+

2 is
lower than b, the e!ort exerted by Þrms is then suboptimal and less projects
are selected than in the Þrst-best! SB > ! F B .

Furthermore if both subsidies are positive, they satisfy:
! 1

÷!
(1 ! ! )dG(! )(b! s+ ) =

! 1

÷!
[! ! ÷! ]dG(! )(" ! (R + s+ )), (15)

and ! SB solves

p(e, !)(R + b) ! [F + f (e, !)] = [1 ! G(! )][p! (e, !)(R + s) ! f ! (e, ! )]. (16)

The Proof is in Appendix A. In the Appendix, we also characterize the
optimal menu when subsidies are not constrained and firms need the reg-
ulator’s consent to initiate a project. Equation (15) exhibits the trade-o�
between e�ciency (left-hand side) and rent extraction (right-hand-side), and
is reminiscent of the equation satisfied by the optimal menu (cf Appendix
A.1).

Several comments are in order that point out the significance of restricting
subsidies to be non negative. Firstly, if subsidies are restricted to be non-
negative, the expected subsidy received by a firm is positive whatever its
type, which is not necessarily true if subsidies can be negative. If s1 < 0
then high type firms will not subscribe to the scheme and their projects will
be initiated with purely private funding. A second threshold should then be
introduced for projects that do not subscribe to the scheme.

Secondly, the disentangling between the choice of ÷! and the bonus s is
feasible as long as neither non-negativity constraints on subsidies are binding.
If one of these two constraints is binding, either s1 = 0 or s2 = 0 , then
the choices of the bonus and the threshold type can no longer be made
independently. It will be further illustrated in the analysis of the benchmark
models.

Thirdly, the surplus of the agency V(s, ÷! ) is not necessarily concave with
respect to s without further assumptions on the distribution of types. This
non-concavity arises because a larger bonus induces more e�orts which re-
duces the gap between the projects probability of success and thus the rent
to high types. Formally, from equation (14), the agency surplus is quadratic
with respect to s with a second order coe�cient:

! 1

÷!
[(! ! ÷! ) ! (1 ! ! )]g(! )d! =

! 1

÷!
(! ! ÷! )

"
g(! ) ! g(1 + ÷! ! ! )

#
d! (17)
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the sign of which depends on the shape of G and the threshold ÷! .10

As a matter of fact the derivation of the optimal scheme in S+ may be
quite complex. However the following two propositions provide some hints
on the qualitative structure of the solution. For instance, with a uniform
distribution of types over [0, 1], the coe�cient of s is null, and the surplus of
the agency is either everywhere increasing or decreasing with respect to s,
whatever the threshold ÷! . The following Proposition can then be deduced.

Proposition 2 With a uniform distribution of types ! over [0, 1], s+
1 = 0

and s2 > 0: failure only should be subsidized.

The Proof is in Appendix A. This proposition may be interpreted as
follows. On the one hand a positive subsidy s1 encourages e�ort, which is
the more valuable the lower ! and the higher b. On the other hand it opens
the way for windfall profit for high type firms. If the probability distribution
over ! is su�ciently flat and large these two e�ects annihilate each other and
a positive subsidy s2 is good enough. In this reasonning the importance of
Assumption 3: " > (R + b) should be stressed. The cost of e�ort should be
su�ciently large or the social benefit should be su�ciently low to ensure that
it is not optimal that all projects succeed with probability 1. Otherwise, the
optimal bonus should be set to ensure that e�ort is high enough to ensure
that the probability of success equals 1 and the selection of project is only
a matter of cost comparison. The following Proposition may be seen as a
counterpoint to Proposition 2: if encouraging e�ort is not too costly, or if
the social benefit is quite large, all projects should be encouraged and will
succeed, the adverse selection problem evaporates. Interestingly, in that case
the subsidy in case of failure is never paid, since all projects succeed, but still
it is necessary to incentivize firms to exert a proper e�ort.

Proposition 3 If Assumption 3 is not satisÞed and" < R + b, there is
a local maximum for unconstrained scheme withinS such that all projects
succeed with probability1:

s = " ! R " e(s) = 1

10In general, multiple local maxima might arise, and a side consequence is that even if the
optimal couple of subsidy within S+ is composed of positive subsidies, the optimal couple
of subsidies within the broader classS can be di!erent and have a negative component.
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and

R + b! (F + f (1, ÷! )) =
1 ! G(÷! )

g(÷! )
"
2

. (18)

This local optimum is within S+ if " is below a threshold.

See Appendix A for the proof. The signiÞcance of these general results
will be further explored through two benchmark situations and a numerical
example.

3 Benchmark situations

3.1 Rewarding failure: adverse selection

The problem of additionality and windfall proÞt appears in its simplest form
in a pure adverse selection problem, in which no e!orts is exerted.11 The
agency does not know the ex-ante probability of successp = ! of a given
project.

The sole remaining purpose of the incentive scheme is to select projects
to be initiated. We will show that the Þrst best is achieved for schemes inS,
there is no need to introduce a menu of contracts. The optimal second best
scheme, with non-negativity constraints, consists in rewarding failure and it
does not get the Þrst best. We shall further discuss how it departs from a
ßat subsidys1 = s2.

The threshold type ÷! at which expected proÞt is null#(÷!, s 1, s2) = 0 is

÷! (s1, s2) =
F ! s2

R + s1 ! s2
(19)

If R + s1 > s 2, as will be the case at relevant schemes, all! " ÷! will be
initiated. The agency surplus can be rewritten:

V(s1, s2) =
! 1

÷! (s1,s2)
[! (b! s1) ! (1 ! ! )s2]g(! )d! (20)

11To be fully rigorous, in a standard adverse selection model e!ort would be exerted and
contractible, the agency would propose a contracte, s1, s2 to Þrms, it would be relatively
similar to the case without e!ort since all Þrms would make the same e!ort, but with an
additional regulatory variable.
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The Þrst best threshold type is:

! F B =
F

R + b
, (21)

And the threshold type without any subsidy is:

! BAU = ÷! (0, 0) =
F
R

(22)

Again decompose the problem of the agency in two steps.
Step 1, given a targeted threshold probability! t the agency minimizes

the expected cost of the subsidy:

C(! t ) = min
s1,s2

! 1

! t
max{ !s 1 + (1 ! ! )s2, 0} dG(! ), s.t. ÷! (s1, s2) = ! t .

If subsidy can be negative, then Þrms might be better o! investing without
subscribing to the scheme, and they do so if the expected subsidy is negative.
This possibility explains the maximum function in the integrand. Indeed,
if the subsidies are constrained to be non negative then an investing Þrm
subscribes to the scheme. This will give the following lemma.

Step 2, the optimal choice of! t maximizesV = b
" 1

! t pg(p)dp! C(pt ). This
will give the proposition that follows.

Lemma 1 Whatever the targeted threshold type! t , the scheme that mini-
mizes the expected cost of the subsidy is:

¥ For the classS, s2 = F and s1 = F ! R+ " with " inÞnitely small. Then,
the proÞts of Þrms that subscribe to the subsidy is null and the surplus
of the agency is equal to welfare minus the BAU proÞt:W(! t ) ! ! BAU .

¥ For the classS+ , s1 = 0 and s2 = ( F ! ! tR)/ (1 ! ! t ). The proÞt of
a Þrm of type! " (! t , 1] is positive, and the agency surplus lower than
welfare minus BAU proÞt.
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Proba !1! BAU! F B ! t

R ! F

! F

s2 ! F

s2 ! F

R + b! F

R + s1 ! F

�BAU

Figure 1: Expected subsidy as a function of the Þrm type: the red area is
equal to the total expected subsidy (weighted byg(! )).

The result of Lemma 1 is illustrated Figure 1. Given a couples1, s2 the
red area corresponds to the total expected subsidy, the dashed line depicts
a change of the subsidy line associated to an increase ofs2 and a reduc-
tion of s1 that leaves the threshold Þrm unchanged. As can be seen such a
change reduces the total expected subsidy by reducing the expected subsidy
obtained by high type Þrms. High type Þrms succeed more frequently than
the threshold type, they get more frequently the subsidy in case of success,
and less frequently the subsidy in case of failure, the expected subsidy is
then reduced by rewarding more failure and less success. At the extreme it
is optimal to reward only failure in order to limit windfall proÞt.

We shall now show that without positivity constraints the optimal value
of ! t is ! F B and the Þrst best is achieved, while! F B " ! t " ! BAU with
constraints. Let us denote! SB the optimal value of ! t(s1, s2) in the second
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best approach. Indeed the following proposition holds:

Proposition 4 At the optimal scheme

¥ For the classS, the optimal scheme is such that! t = ! F B and the Þrst
best is achieved. The proÞt of Þrms that subscribe to the scheme is null,
and the agency surplus is equal toW F B ! ! BAU .

¥ For the classS+ , the Þrst best is not achieved, the optimal scheme
rewards failure only withs1 = 0 and s2 " 0 is such that:

(i) s2 = 0 and ! SB = ! BAU if

b#
R3

F (R ! F )

! 1

F/R
(1 ! ! )g(! )d! (23)

(ii) otherwises2 > 0 and ! F B # ! SB # ! BAU with ! SB deÞned by the
following implicit equation:

! SB = ! F B +
1

g(! SB )
R ! F
b+ R

! 1

! SB

1 ! !
(1 ! ! SB )2

dG (24)

The proposition may be interpreted as follows. Consider an incentive
scheme and assume that! F B # ÷! # ! BAU . On the one hand projects of type
! such that ! F B # ! # ÷! will not be implemented while they should from
a Þrst best point of view. This generates a relative loss, to be denoted as a
selection bias:W F B ! W(÷! ). On the other hand projects of type! such that
÷! < ! # 1 will be implemented but with a windfall proÞt, which is a second
loss for the regulator:!( s1, s2) ! ! BAU . This gives the following result.

Corollary 4 The optimal second best solution minimizes the sum of the se-
lection bias and the windfall proÞt.

V(s1, s2) = W F B ! ! BAU !
"

W F B ! W(÷! )
# $% &

selection bias

+ !( s1, s2) ! ! BAU

# $% &
windfall proÞts

'

Note that if Assumption 1 is not satisÞed, i.e.! BAU < 0, the optimal
scheme inS is non negative. The Þrst best is achieved inS+ .

It is relatively straightforward to establish that a menu of subsidies cannot
improve the situation whenever Assumption 1 holds. Whatever the initial
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subsidy couple proposed(s1, s2), there is no room for maneuver: the agency
cannot propose another couple(s!

1, s!
2) that would be both more interesting to

a Þrm of type! > ÷! (s1, s2) and less costly to the agency. The Þrst condition
being equivalent to !s !

1 + (1 ! ! )s!
2 > !s 1 + (1 ! ! )s2 and the second to

!s !
1 + (1 ! ! )s!

2 < !s 1 + (1 ! ! )s2. Note that the above reasoning does not rest
on the positivity constraints but on the risk neutrality of the principal and
the agent, or the absence of moral hazard, which is analyzed in the following
two sections.

Let us now consider as a direct extension a situation in which the agency
observes with some noise whether the project is successful or not. The agency
can only condition the subsidy on the observed signal,s1 if it observes a
success ands2 if it observes a failure. Let" 1 be the probability of observing
a signal of failure if the project is a success and" 2 the probability of observing
a signal of failure if the project fails. We assume that" 2 " " 1, a perfect signal
corresponds to" 2 = 1 and " 1 = 0 and an uninformative signal to" 2 = " 1.
The subsidy obtained by a Þrm is" 1s2 + (1 ! " 1)s1 in case of success and
" 2s2 + (1 ! " 2)s1 in case of failure. The threshold project is then:

÷! (" 1s2 + (1 ! " 1)s1, " 2s2 + (1 ! " 2)s1),

and the expected total subsidy is
! 1

÷!

"

!
#
(1 ! " 1)s1 + " 1s2

$
+ (1 ! ! )

#
(1 ! " 2)s1 + " 2s2

$%

dG(! )

Corollary 5 If the success and failure of a project are not perfectly observ-
able,

¥ For the class S: the Þrst best is achieved.

¥ For the classS+ : The optimal scheme remains of the forms1 = 0
and s2 > 0. The second best threshold type, the expected subsidy, the
agency surplus, the welfare and the proÞt of Þrms only depend on the
ratio " 1/" 2.

Ð If " 1 = 0 (success is perfectly observed), then, whatever" 2, at
the optimal second best scheme, the threshold probability, welfare
and s2 do not depend on" 2 and correspond to perfect observability
situation.
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Ð Otherwise, with a uniform distribution, the threshold probability is
higher, and, welfare and the agency surplus are lower than in the
case with a perfect signal.

Proof. see Appendix B.3
Technically the agency always prefers to subsidize failure and not success.

Whether a failure is not properly identiÞed (! 2 < 1) is not an issue since it
can play with s2 to increase the expected subsidy in case of failure. The
agency is mainly concerned by the noise in case of success,! 1 > 0. The ratio
! 1/! 2 is the number of $ awarded to successful projects for any $ awarded for
failed projects, this ratio determines the ine!ciency of the subsidy scheme
with noise.

Two comments are in order. Firstly, an imperfect signal may originate
from a manipulation of the agent. The mere possibility of such a manipula-
tion deteriorates the e!ciency of the incentive scheme. Secondly, in case of
an uninformative signal, the optimal scheme is equivalent to a ßat subsidy
s1 = s2 since the subsidy will be given independently of the signal received.

3.2 Rewarding success: moral hazard

In a pure moral hazard setting the type of the Þrm" is known by the agency,
but it can neither observe the e"ort nor its cost. We shall show that without
the non negativity constraints the Þrst best is achieved. With the non nega-
tivity constraints rewarding success only is the second best solution, however
the Þrst best is not achieved.

The e"ort that maximizes welfareeF B is given by (8), the e"ort exerted
by the Þrm by (9) and eBAU = e(0, 0) = R/# so that eBAU Æ eF B .

We can now derive" BAU and " F B that give the respective thresholds for
a Þrm to deploy the project without subsidy and for a Þrst best deployment.
It is easily seen that:

" BAU =
1
R

2F# ≠ R2

2# ≠ R
(25)

" F B = max
! 1

R + b
2F# ≠ (R + b)2

2# ≠ (R + b)
, 0

"

(26)

Note that " F B Ø 0 if and only if (R + b)2 Æ 2F#. As b increases" F B

decreases from" BAU to 0. BAU is such that for " Æ " BAU the Þrm does not
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initiated the project, and for ! BAU < ! ! 1, it deploys the project and makes
the e!ort eBAU .

We now describe the optimal second best scheme(s1, s2) " S+ as a func-
tion of the type ! of the project. The agency should decide whether to ensure
the deployment of a project for! ! ! BAU , and whether to further motivate
e!ort. Firstly, if the agency ensures the deployment of a project it is optimal
to do so by rewarding success and not failure i.e.s1 > 0 and s2 = 0 since it
maximizes the e!ort of the Þrm. Secondly, if the agency subsidizes a project
it has to decide whether to solely ensure the deployment, leaving no rent
to the Þrm, or further subsidizing success to increase the ÞrmÕs e!ort. The
occurrence of these two possibilities depends on the value of the parameters
b, " , R and F .

For small values of the external beneÞtb, we have ! F B # 0 and the
agency does not subsidize the Þrm as long as! ! ! F B . For a higher type ! ,
the agency subsidizes the project and calibrates the subsidy so that the ÞrmÕs
proÞt is null. For larger values ofb, the agency might let a windfall proÞt to
the Þrm to achieve a high probability of success. The following proposition
makes this precise and proves that there will be a windfall proÞt as soon as
R + b# 2

$
2F" .

DeÞne:

s1A (! ) =
b%R

2
%"

!
1 %!

(27)

and

s1B (! ) = "
!

1 %!

! "

1 +
2F
"

1 %!
! 2

%1

#

%R (28)

Proposition 5 The optimal scheme(s!
1, s!

2) is such thats!
2 = 0. The precise

expression ofs!
1(! ) depends on the two following cases:

Case 1: If R + b ! 2
$

2F" (! F B > 0) then
- if ! ! ! F B the optimal subsidy is null, the project is not implemented;
- if ! F B ! ! < ! BAU the optimal subsidy iss1B (! ), the project is imple-

mented and the Þrm gets no windfall proÞt;
- if ! # ! BAU the optimal subsidy is null, it is business as usual, the

project is implemented and the Þrm gets no windfall proÞt.

Case 2: if R + b# 2
$

2F" (! F B = 0) there is a threshold! A such that:
- if ! ! ! A the optimal subsidy iss1A (! ), the project is implemented and

the Þrm gets a windfall proÞt;
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- if ! A ! ! < ! BAU the optimal subsidy iss1B (! ), the project is imple-
mented and the Þrm gets no windfall proÞt;

- and if ! " max{ ! A , ! BAU } the optimal subsidy is null, it is business as
usual, the project is implemented and the Þrm gets no windfall proÞt;

Proof in Appendix B.4.
The precise expressions of! A cannot be determined explicitly, it is the

type at which the expressions1A is either equal tos1B or null. Above this
type ! A , it is not worth conceding a rent to the Þrm in order to increase
e!ort. Depending on the value ofb this threshold is either larger or lower
than ! BAU .

With an unconstrained scheme, the agency implements the Þrst best,
welfare is then equal tow(!, eF B ), and the Þrm gets its BAU proÞt. The
proof of this lemma is straightforward.

Lemma 2 The Þrst best is obtained with a scheme inS such that:
- if ! ! ! F B , no subsidy is proposed and the project is not initiated,
- if ! " ! F B , the optimal scheme is such thats1 # s2 = b and s2 such that

" = " BAU .
The agency surplus is thenv = p(e, !)(b # (s1 # s2)) # s2 = # s2, the

subsidys2 is negative and corresponds to a tax on proÞt.

4 Could it be optimal to subsidize both suc-
cess and failure? An illustrative example

As already mentionned the derivation of the optimal second best scheme in
the general case may be quite complex. In this section we build on the general
results to provide some ideas on the qualitative structure of the solution.

Start with Proposition 2. It states that if the probability distribution of
types! is large and uniform then rewarding failure only is the solution. Now if
the weight of the distribution concentrates on low types this can no longer be
correct: it will be optimal to elicit e!orts from these low types, i.e. to reward
success. Note that this is equivalent to assuming that the social beneÞtb is
high or that the cost of e!ort # is low. We shall show through an illustrative
example that the optimal scheme continuous shifts from rewarding success
to rewarding failure as the weight of distribution moves from low types to
high types.
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More speciÞcally, we consider only two types:! L and ! H with ! L < ! H .
The probability of type ! H is denoted" . We analyze the inßuence of the
distribution of types. We shall show that there is a range for" for which
both subsidies are strictly positive while for lower" rewarding success prevails
and for higher " rewarding failure prevails.12

The following assumption is introduced to get the results.

Assumption 6 We take(R + b) < 2
!

2F# and ! L and ! H such that! F B <
! L < ! BAU and ! BAU < ! H .

To get intuition on the structure of the optimal second best scheme start
with a situation in which the cost of e!ort ( #) is very high. Rewarding failure
only is optimal. As # decreases, for low values of" it may become worthwhile
to induce a low type Þrm to make an e!ort through rewarding success, the
incremental rent for the high type Þrm being more than compensated. How
do these two situations of rewarding success and rewarding failure combine
together? As" increases the balance between the beneÞt accruing from a
higher e!ort from a low type Þrm should exactly balance the increase in
the rent of the high type Þrm. The following lemma precisely deÞnes the
relationship betweens1 and s2 for these intermediary situations.

Lemma 3 If both subsidies are strictly positive the optimal scheme(s!
1, s!

2)
in S+ satisfy:

s!
1 " s!

2 = b"
#" (! H " ! L )

(1 " ! L ) " 2" (! H " ! L )
(1 " eF B ) (29)

and s!
2 is such that the proÞt of the low type Þrm is null, it solves:

s!
2 = F " ! L (R + ( s!

1 " s!
2)) " (1 " ! L )

(R + ( s!
1 " s!

2))2

2#
(30)

The proof is in Appendix C.
We now characterize the optimal second best scheme for all values of" .

12In Appendix we show that in such a situation there are two potential beneÞts to
using a menu in S, i.e. inducing di!erent e!ort levels depending on the type of the Þrm
and taxing proÞts. Still the optimal menu leaves a gap as compared with the Þrst best:
asymmetry of information generates some ine"ciency independently of constraints on the
incentive schemes.
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Proposition 6 The optimal scheme (s!
1, s!

2) depends on three thresholds! 1,
! 2 and ! 3 as follows:
! for 0 < ! " ! 1 : s!

1 > 0 and s!
2 = 0; s!

1 = s1B ("L ) given by equation (28)

! for ! 1 < ! < ! 2 : s!
1 > 0 and s!

2 > 0 given by Lemma 3;

! for ! 2 < ! < ! 3 : s!
1 = 0 and s!

2 > 0 such that#("L , e,0, s!
2) = 0 :

s!
2 = R ! $ + $

!

1 !
2
$

R ! F
1 ! "L

" 1/ 2

! for ! 3 < ! " 1 : s!
1 = 0 and s!

2 = 0.
The proÞt of a low type Þrm is always null, a high type Þrm gets a windfall

proÞt as long as! < ! 3.

To complete our discussion we provide the detailed solution for speciÞc
values of the parameters and consider the beneÞt of introducing a menu. We
take F = 1, R = 1.5, b= 2 and $ = 12. We have" F B = .16 and " BAU = .64.
The low type is such that " F B < " L = .3 < " BAU and the high type such
that "H = .75 > " BAU . Assumption 6 is satisÞed: A low type Þrm would
not implement the project but it would be socially valuable to do it. A high
type Þrm would implement the project without subsidy. The parameter!
denotes the probability for the Þrm to be of the high type.

We can derive numerically the thresholds for! to approximately be ! 1 =
.1, ! 2 = .3 and ! 3 = .6. Figure 2(a) depicts the second best optimal solution:
only reward success if0 " ! " ! 1, reward both success and failure if! 1 "
! " ! 2, only reward failure if ! 2 " ! " ! 3, and provide no subsidies if
! 3 " ! " 1. The extreme cases correspond to intuition. Reward success if!
is small, a situation in which e!ort should be encouraged and windfall proÞt
discounted by a low probability of occurence. Reward failure if! is large
for the reverse reasoning, up to a point at which type"L does not matter
anymore andBAU should be prefered, letting no windfall proÞt to type"H .
It is when ! 1 " ! " ! 2 that we expect the most from a menu. The optimal
menu is derived from Proposition 7 in Appendix C.3. Figure 2(b) depicts
the optimal menu. Observes that it uses negative values for subsidies so as
to get back the proÞt of the Þrm.13

Figure 2(c) allows for comparing the second best e!ort and the conditional
menu e!orts. The second best e!ort decreases as! gets into the zone! 1 "
! " ! 2. The e!ort for type "L is sacriÞced for not giving a windfall proÞt to

13We have not derived the optimal second best menu but we think that this would not
qualitatively alter our discussion.
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type ! H . With a menu this is also the case but the Þrst best e!ort for a high
type Þrm is elicited, for a low beneÞt. Consequently we do not expect that
the menu increases a lot the expected beneÞt for the agency. This argument
does not carries over to large values of" since negative subsidies allow the
agency to recover the proÞt of the Þrm but this would no longer be true
with a constrained menu. As a side comment observe that it is optimal not
to induce the Þrst best e!ort for the low type Þrm (a standard result of
contract theory) this explains why the Þrst best cannot be achieved with a
menu independently of negativity constraints.
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(a) Optimal second best scheme as a function of
the probability ! of high type

(b) Optimal menu { (s1H , s2H ), (s1L , s2L )} as a
function of the probability ! of high type

(c) E!orts as a function of the probability ! of
high type

Figure 2: Optimal second best scheme, menu and e!orts with two types L
and H as a function of the probability ! of a high type (R = 1.5, F = 1,
" = 12 and b= 2).

Figure 4 indeed shows that the beneÞt of using a menu is not signiÞcant
for ! 1 ! ! ! ! 2. As expected the beneÞt of using a menu (without non-
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Figure 3: Payo!s as a function of the probability of a high type with First
Best, Second Best and a menu (unconstrained).

negativity constraints) becomes signiÞcant for high! through recovering the
proÞt of the Þrm. In this Figure the expected windfall proÞt for the Þrm with
a second best optimal scheme is also displayed (multiplied by 10 to be seen
in the graph). There are two peaks reßecting the conßicting forces associated
with rewarding success and rewarding failure.

5 Policy implications and research extensions

This paper is concerned with public Þnancing of R&D programs for the en-
ergy transition that have the following characteristics: the program has an
uncertain outcome and an initial sunk cost, full success or total failure, the
social beneÞt is associated with success which also generates private gains,
public Þnancing takes the form of non negative subsidies, the state agency
which monitors the subsidy allocation process has much less information
about the economics of the project than the Þrm. We proved that reward-
ing failure is a superior strategy in presence of pure adverse selection while
rewarding success is superior in presence of pure moral hazard. We also iden-
tiÞed conditions in which both forms of subsidies should be implemented. We
showed that conditional subsidies always perform better than ßat subsidies.

The motivation comes from an in depth analysis of a state aid program
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Structural parameters Reward Failure Flat subsidy Reward success

Social beneÞt High High Very high
Risk of windfall proÞt High Low Low
Distribution of type Flat and spread Bimodal Unimodal

Observability of success High Low High
Impact of e!ort e
on the probability
of successp(e, ! )

Small Low High

launched in France in 2010, the Investments for the Future programme. It
covers a period of 10 years (2010-2020), for a total budget of 57 Be , and
several types of activities,14 among which innovative activities for the ener-
getic transitions. This last part, of a total budget of 10 Be , is monitored
by ADEME, a state agency.15 Yearly, ADEME opens calls for innovative
projects on some predeÞned areas. Each project is examined on its own
merit, a selection is made. Then ADEME proposes a contract to each eli-
gible project and the Þrm accepts or rejects the contract. Over 2010-2015
ADEME has Þnanced more than 250 projects in areas such as renewable en-
ergy, zero emission vehicles, green chemistry, etc. Similar programs exist in
other countries, notably the SunShot initiative in the US, launched in 2011
with the aim of driving down the cost of solar energy.16

Initially ADEME only used ßat subsidies then introduced repayable ad-
vances for two reasons. First, a regulatory constraint from the EU that limits
the level of pure subsidy at a given share of the project budget while the con-
straint is more ßexible for repayable advances (which are less likely to bias
competition). Second evidence of windfall proÞts appeared quite clearly in
some projects. Indeed as shown in our analysis repayable advances reduce
windfall proÞts and ensure additionality (Proposition 4). In some instances,
the empirical di!culty to observe success led the agency to deÞne interme-
diary technical steps and have repayable advances paid back in part along
the way to avoid being manipulated and having to fall back on ßat subsidies
(Corollary 5).

We had the opportunity to review a large number of projects and discuss
their contractual arrangements with ADEME. The economic analysis of this

14https://www.gouvernement.fr/secretariat-general-pour-l-investissement-sgpi
15http://www.ademe.fr/en/investments-for-the-future
16https://www.energy.gov/eere/solar/sunshot-initiative
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paper allows for a better understanding of the issues at stake and o!ers
suggestions for policy recommendations. These suggestions are summarized
in Table 5 as a typology of situations. Along the lines a number of dimensions
related to the project under consideration need be assessed. Depending on
the signiÞcance of these dimensions three extreme contractual modes can
be used as benchmarks: reward failure, ßat subsidy, reward success. The
proposed typology directly follows from our model. The Þrst two lines are
the key ingredients of the projects. Then, we recommend that if all type Þrms
make low revenue from the project (R is low so that the Þrst best is achieved
with an almost ßat subsidy, section 2.2) or if the observability of the outcome
is low (inducing a risk of managerial gaming, corollary 5), ßat subsidies should
be preferred. This will also be the case whenever these two dimensions are
less signiÞcant but the distribution of types is bimodal and the impact of
e!ort is low (Proposition 6). Reward failure should be preferred when the
risk of windfall proÞt is high, all types are equally likely and the impact of
e!ort is low (Proposition 2). Reward success should be preferred when the
impact of e!ort is high (Proposition 5) and the probability distribution is
concentrated on low types (Proposition 6). A mixture of rewards (i.e. a
scheme close to a ßat subsidy) should be preferred whenever the distribution
of types is bimodal (Proposition 6).

We think that this typology already provides relevant and economically
grounded guidance for designing contractual arrangements. Some extensions
would be worthwhile to pursue. The analysis carried on in Section 4 is
preliminary: a more complete study should be made, and robustness to other
functional forms be tested. Secondly we only investigated a situation in
which the project leads to two extreme outcomes, failure or success. We
may consider projects involving a technical phase (a proof of concept is or
is not achieved) and a market phase (with a continuous outcome such as
sales). The contractual arrangements should take advantage of the interim
information that is revealed along the project. Thirdly, the asymmetry of
information may involve another party. It appeared that in some projects
ADEME plays the role of a middle man between the Þrm and the banking
system. Indeed, at Þrst, the asymmetry of information is much more acute
between the Þrm and the banking system (which induces a capital market
failure) than between the Þrm and ADEME (the state agency has a much
higher technical expertise than banks). The formalization should explicitly
analyze how the contractual arrangement between the state agency and the
Þrm should evolve as the asymmetry between the bank and the Þrm reduces
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over time.
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Appendix

A General model

A.1 Optima menu without constraints

We provide a description of what would be the structure of a menu if the
subsidies are not constrained to be positive, and Þrms cannot initiate the
project without the regulator consent.

It is easier to work with the bonuss(! ) and considers2(! ) as a Þxed
transfer. The agency proposes a structured menu(s(! ), s2(! )) ! ! (0,1), a Þrm
of type ! selecting the item(s(" ), s2(" )) has a proÞt#(!, " ) = p(e, !)(R +
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s(! )) + s2(! ) ! (F + f (e, ")) , and the Þrst order condition necessary for self
selection isp(e, ")s!(" ) + s!

2(" ) = 0 .
Using the standard methodology in contract design, denoting#m = #(", " ),

its total derivative is d#m/d" = p! (R + s) ! f ! (e, ") which only depends on
the bonuss(" ) and not s2(" ) becausee does. Thanks to this relationship and
an integration by part the surplus of the agency can be written:

V =
! 1

÷!

" #
p(e, ")(R + b) ! (F ! f (e, "))

$
g(" ) !

d#m

d"
[1 ! G(" )]

%

d"

The optimal bonuss(" ) should be such that

pe(b! s)
de
ds

=
1 ! G

g
d
ds

#
p! (e, ")(R + s) ! f ! (e, ")

$

and with our quadratic speciÞcations(" ) solves:

(1 ! " )(b! s)
1
$

=
1 ! G(" )

g(" )
(1 ! e(s)) =

1 ! G(" )
g(" )

($ ! R ! b)
1
$

(31)

which looks like the equation (15) satisÞed by a simple scheme(s, s2). We
recover the usual result thats = b for high types. The selection of projects
is done with the choice ofs2(÷" ) the proÞt of the ÷" Þrm being nul.

A.2 Proof of Proposition 1

The agency surplus is positive fors1 = s2 = 0, and if s1 ! s2 " b it is
non-positive, therefore, at the optimum schemes1 ! s2 < b.

Concerning the selection of projects, several cases should be distinguished
according to the sign of the two subsidies at the optimum:

i If s1 > 0 and s2 > 0: the derivative of V with respect to s, expressed
in eq. (14), is null and eq. (15) is satisÞed.

" SB cancels the derivative ofV, given by eq. (13), with respect to÷"
which gives (16).

ii If s1 " 0 and s2 = 0: then s1 < b and at " SB

0 = p(e, "SB )(R + s1) ! [F + f (e, "SB )] from eq. (10) (32)

< p(e, "SB )(R + b) ! [F + f (e, "SB )] (33)

< p(eF B , " SB )(R + b) ! [F + f (eF B , " SB )] (34)

therefore," SB > " F B less projects are selected than at the Þrst best.
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iii If s1 = 0 and s2 > 0: the above method cannot be applied, the Þrst
order condition should be considered. The threshold÷! cannot be chosen
independently from the bonuss = ! s2, and s2 cancels the derivative
of V given by eq. (11) so

p(e,÷! )(b+ s2) ! s2 =
! 1

÷!
[pe.(b! s2)e! + (1 ! p)] dG(! )

" #
! " ÷!/"s 2

$

and injecting eq. (10) the left hand side isp(e,÷! )(R+ b) ! [F + f ] which
is then strictly positive, since" ÷!/"s 2 < 0, and together with the fact
that e < eF B = implies that ! SB < ! F B .

A.3 Proof of Proposition 2

The second order coe!cient ofs is given by eq. (17), and with a uniform
distribution over [0, 1] it is null.

Therefore, the derivative ofV with respect to s is (from eq. (14)):

"V
"s

=
1
#

! 1

÷!

#
(1 ! ! )b! (! ! ÷! )(# ! R)

$
d!

<
b
#

! 1

÷!

#
(1 ! ! ) ! (! ! ÷! )

$
d! since# ! R > b

= 0

V is strictly decreasing with respect tos so s1 = 0 (otherwise s can be
decreased while keeping÷! constant).

A.4 Proof of Proposition 3

From equation (9), e(s) = 1 for s " # ! R so that from equation (14),V is
ßat for s " # ! R, and by continuity it is increasing for s slightly below. It
is then locally optimal for any targeted threshold to sets = # ! R.

With e = 1, the cost of a project of type! is then F +(1 ! ! )#/ 2, and the
agency surplus can then be written :V = (1 ! G(÷! ))[(R+ b)! (F +(1 ! ÷! )#/ 2)].
The maximization of which gives equation (18).

With s = # ! R, p(e, !) = 1 and a Þrm proÞt is$ = ( R + s) ! [F + f ] =
# + s2 ! F ! (1 ! ! )#/ 2. The selection of projects is ensured by setting
s2 = F ! (1 + ÷! ) "

2 , and s1 = s + s2 = F + (1 ! ÷! ) "
2 ! R.

Both are non-negative for a su!ciently small #.
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B Benchmark situations

B.1 Proof of Lemma 1

Consider a change of the subsidy couple that keeps! t unchanged: ! tds1 +
(1 ! ! t )ds2 = 0. For ! > ! t the e!ect of this change on the expected subsidy
received by the Þrm of type! is: (! ! ! t )(ds1! ds2) which is negative ifds2 > 0.
Therefore, to reduceC(! t ) the agency should increases2 and reduces1.

B.2 Proof of Proposition 4

The threshold probability as a function of s2 is ÷! (0, s2), the derivative of
welfare is:

! [÷!b ! (1 ! ÷! )s2]g(÷! )
" ÷!
"s 2

!
! 1

÷!
(1 ! ! )g(! )d! (35)

the Þrst term is the beneÞt from the marginal project, the second term is
the increased subsidy to all more proÞtable projects. the derivative of the
threshold probability is

" ÷!
"s 2

=
1 ! ÷!

R ! s2
=

(1 ! ÷! )2

R ! F

the derivative of welfare could then be rewritten:

[÷! (R + b) ! F ]g(÷! )
(1 ! ÷! )2

R ! F
!

! 1

÷!
(1 ! ! )g(! )d! (36)

At s2 = 0 ÷! = F/R , and the derivative of welfare is negative if

[F (R + b) ! FR]g(F/R )
1
R

(1 ! F/R )2

R ! F
"

! 1

÷!
(1 ! ! )g(! )d!

point (i) follows. Otherwise, the optimal subsidy cancels the derivative of
welfare and point (ii) describes the Þrst order condition.

B.3 Proof of corollary 5

Let us denote#1 = $1s2 + (1 ! $1)s2 and #2 = $2s2 + (1 ! $2)s2 the subsidies
obtained in case of success and failure respectively.
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¥ For the unconstrained class S: with the couple of subsidy: s1 = F !
! 2R/ (! 2 ! ! 1) and s2 = F + (1 ! ! 2)R/ (! 2 ! ! 1), the expected subsidies are
" 1 = F and " 2 = F ! R which implement the first best.

¥ For the constrained class S+ :
1. s1 = 0 and s2 > 0: The reasoning of Lemma 1 can be reproduced:

an increase of " 2 coupled with a reduction of " 1 that leaves ÷# unchanged
reduces the total expected subsidy. Consequently it is optimal to set s1 = 0
and s2 > 0.

2. Then, with s1 = 0 , " 1 = x" 2 with x = ! 1/! 2 and the threshold
probability is ÷#(x" 2, " 2), the regulator surplus is

V(x" 2, " 2) =
! 1

÷!

"

#(b! x" 2) ! (1 ! #)" 2

#

dG(#)

and welfare is W(÷#(x" 2, " 2)) .
3. If ! 1 = 0 : then x = 0 and the surplus of the regulator, the profit of

firms, and total welfare could all be written as functions of " 2 without any
other dependence on ! 2. The optimum second best scheme is then similar to
the scheme described by Proposition 2 with ! 2s2 being independent of ! 2.

4. Otherwise, for ! 1 > 0: then x > 0,
4.1. Let us prove that #SB is increasing with respect to x, to do so we

first write the first order condition:
- the total derivative of the threshold type w.r.t. " 2 is:

d÷#
d" 2

= !
1 ! (1 ! x)÷#

R ! (1 ! x)" 2

the first order condition satisfied at the optimal scheme is
"
÷# ! #F B

#

g(÷#)
1 ! (1 ! x)÷#

R ! (1 ! x)" 2
=

! 1

÷!

"

#x + (1 ! #)
#

dG(#)

and with a homogeneous distribution it gives:

÷# = #F B +
R ! (1 ! x)F

R + b
1

2(1 ! x)

"

1 !
x2

$
1 ! (1 ! x)÷#

%2

#

- #SB increases with respect to x (brutal calculations): The right hand side
of the first order condition above side is a decreasing function of ÷#, and it is
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increasing with respect to x: Its derivative is

(1 ! ÷! )
2(R + b)

2Fx + R[(1 ! ÷! )2 ! x÷! (1 + ÷! )]
!
1 ! (1 ! x)÷!

" 3

the sign of which is the sign of2Fx + R[(1! ÷! )2 ! x÷! (1+ ÷! )] which is positive
(using that ÷! < F/R ).

4.2. The e!ect of x on the regulator surplus at the optimal scheme, by
an envelop argument, it is

"V
"s 1

(x#2, #2)#2

which is negative.
Welfare is decreasing with respect to÷! as long as÷! > p F B , so it is de-

creasing with respect tox.

B.4 Proof of Proposition 5

¥ First step: sú
2 = 0:

The regulator maximizes its surplus (eq. 3) subject to the non-negativity
constraints on proÞt (eq.1) and subsidys1 and s2. The Lagrangien is:

L = v(!, e(s1 ! s2), s1, s2) + µ0$ + µ1s1 + µ2s2

With µ0 the Lagrange mulltiplier associated to the participation constraint,
µi the multiplier associated with the non-negativity constraint ofsi , i = 1, 2.
At the optimum

pe(e, !)[b! (s1 ! s2)]eÕ ! (1 ! µ0)p + µ1 = 0 (37)

! pe[b! (s1 ! s2)]eÕ ! (1 ! µ0)(1 ! p) + µ2 = 0 (38)

And the corresponding slackness conditions. There are eight possible sit-
uations depending on whether each Lagrange multiplier is null or positive.
Summing the two equations gives

µ1 + µ2 + µ0 ! 1 = 0 (39)

Let us denotesú
1 and sú

2 the optimal subsidies.
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¥ At least one of theµi is positive: otherwiseµ1 = µ2 = 0 then µ0 = 1
and s!

1 ! s!
2 = b. Welfare is then ! (1 ! p)s!

2 < 0, which cannot be
optimal.

Consequently,µ1 + µ2 > 0 and µ0 < 1 (from eq. (39)).

¥ We show by contradiction that b > s!
1 ! s!

2: otherwise, from equation
(37) µ1 = (1 ! µ0)p ! pe[b! (s!

1 ! s!
2)]e" > 0, which implies that s!

1 = 0
and s!

2 < s !
1 ! b= ! b < 0 a contradiction.

¥ Then s!
2 = 0: from equation (38): µ2 = (1 ! µ0)(1 ! p) + pe[b! (s!

1 !
s!

2)]e" > 0.

¥ Second step: Expressions of the optimal subsidy
There are four possible cases: i)s!

1 = 0 and ! > 0, ii) s!
1 = 0 and ! = 0,

iii) s!
1 > 0 and ! > 0, or, iv) s!

1 > 0 and ! = 0.
Case i) corresponds to Òbusiness as usualÓ no subsidy is used and the

project is implemented with suboptimal e!ort. Case ii) corresponds to a
situation in which the project is not proÞtable and it is not worth subsidizing
it.

In case iii) s!
1 > 0 and ! > 0 then "p/"e [b ! s!

1]e" = p, and in case iv)
s!

1 > 0 and ! = 0 then pe[b! s!
1]e" ! p = ! µ0p " 0.

The subsidys1A (#) deÞned by equation (27) is the solution of"p/"e [b!
s!

1]e" = p. And s1B (#) is the solution of ! (#, e(s1), s1, 0) = 0, replacing e by
(R + s1)/$ in eq. (1) gives a second order equation in(R + s1) with one
positive root given by equation (28).

If s!
1 > 0 and ! > 0 then s!

1 = s1A , and if s!
1 > 0 and ! = 0 then s!

1 = s1B .
Furthermore, if both expressionss1A and s1B are positive the optimal subsidy
is the larger of the two.

¥Third step: DeÞnition of the thresholds
#BAU is the solution of s1B (#) = 0 , it is the lowest # at which a null

subsidy ensures deployment.#A is the solution ofs1A (#) = max { s1B (#), 0} .

¥ From the the expressions (27) and(28)s1A > s 1B if and only if

(b+ R)2

4
>

!
$#

1 ! #

" 2

+ 2F
$

1 ! #
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the right hand side being strictly increasing with respect to! and,
converging toward inÞnity as! approaches1, so that ! A < 1 and s1A >
s1B ! ! < ! A .

¥ ! A " 0 if and only if R + b < 2
#

2F" , otherwise, if R + b > 2
#

2F" ,
then for all ! $ [0, 1] s1B > s 1A , that is #(!, e(s1A ), s1A , 0) < 0.

¥ s1B (! F B ) = b (if ! F B > 0) by deÞnition of ! F B : p(eF B , ! F B )(R + b) %
F % f (eF B , ! F B ) = 0 , so 0 = v(! F B , eF B , b,0) + #(! F B , e(b), b,0) =
#(! F B , e(b), b,0).

We can now look at the optimal solution

¥ Case 1: R + b < 2
#

2F" :

Ð Then s1A < s 1B for all ! , which implies that pe[b% s1]e! < p for
all s1 " s1B , for all ! . The optimal subsidy is then eithers"

1 = 0
or s"

1 = s1B .

Ð The surplus of the regulator fors1 = s1B (! ) is v = p(e(s1B (! )) , ! )(b%
s1B (! )) , it is positive if and only if b > s1B (! ), that is, ! > ! F B .

Ð For ! > ! BAU : the project is implemented and no surplus is cre-
ated by a marginal increase of e!ort (peb%p < 0) so s"

1 = 0.

¥ Case 2: R + b" 2
#

2F" :

Ð For 0 < ! < ! A , s1A > s 1B so that #(!, e(s1A ), s1A , 0) > 0, and
pe[b%s1]e! %p > 0 for both s1 = s1B and s1 = 0, so that s"

1 = s1A .

Ð For ! A & ! < ! BAU : s1A < s 1B so that #(!, e(s1A ), s1A , 0) < 0 and
s1B > 0 so that s"

1 = s1B . This case might not arise if! A > ! BAU

that is s1A (! BAU ) > 0.

Ð For ! " max{ ! A , ! BAU } : the proÞt is positive for s1 = 0 and
pe(b%s1)e! %p < 0 at s1 = 0 so that s"

1 = 0.

C Adverse Selection and Moral Hazard

To alleviate notation the probability p(e, !L ) and p(e, !H ) are denoted with
subscripts: pL (e) and pH (e), and the proÞts#L and #H .
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Let us denote(s!
1, s!

2) the optimal solution. There are four possible types
of solution depending on whether each component is positive or null. Lemma
(3) derive the expressions of the subsidies when they are positive, Proposition
(6) consider the inßuence of! on the solution.

C.1 Proof of Lemma 3

If both s!
1 and s!

2 are positive, then low type projects are implemented and
their proÞts are null. The regulator surplus is then

v(s1, s2) = (1 ! ! )
!
pL (b! s1) ! (1 ! pL )s2

"
+ !

!
pH (b! s1) ! (1 ! pH )s2

"
(40)

and the optimal scheme satisÞes the following equation

"v
"s 1

"# L

"s 2
!

"v
"s 2

"# L

"s 1
= 0

that is
"v
"s 1

(1 ! pL ) !
"v
"s 2

pL = 0

which gives, denotings! = s!
1 ! s!

2:

! [pH (1 ! pL ) + (1 ! pH )pL ] =
#

(1 ! ! )"p
"e

(e, $L ) + !
"p
"e

(e, $H )
$

(b! s! )e"

! [pH ! pL ] =
#

(1 ! ! )(1 ! $L ) + ! (1 ! $H )
$

(b! s! ) 1
%

! ($H ! $L )(%! (R + s! )) =
#

(1 ! ! )(1 ! $L ) + ! (1 ! $H )
$

(b! s! )

which then gives equation (29). The equation (30) corresponds to#L = 0.

C.2 Proof of Proposition 6

The solution s!
1 = s!

2 = 0 corresponds to the situation in which L Þrms do
not enter. The regulator surplus in that situation is:

V1(! ) = !p H b
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In all other situations, if one of the optimal subsidy is positive, L Þrms
do enter (from Proposition 5, if only H Þrms enter then it is optimal to set
s1 = s2 = 0). The regulator surplus when L Þrms enter is

V2 = (1 ≠ ! )[pL(b≠ s1) ≠ (1 ≠ pL)s2] + ! [pH(b≠ s1) ≠ (1 ≠ pH)s2]

that can be equivalently deÞned as a function ofs = s1 ≠ s2 and s2:

V2(!, s, s 2) = (1 ≠ ! )[pL(b≠ s) ≠ s2] + ! [pH(b≠ s) ≠ s2]

and the constraint s1 Ø 0 is then s + s2 Ø 0.
The problem of the regulator can be decomposed in two steps: Þrst max-

imize V2 and then compare the maximum obtained withV1.
Let us consider the maximization ofV2 subject to " L Ø 0, s2 Ø 0 and

s + s2 Ø 0 and denotes!! (! ) and s!!
2 (! ) the solution, and s!!

1 = s!! + s!!
2 .

The problem can be simpliÞed by transforming the three constraints" L Ø 0,
s2 Ø 0 and s+ s2 Ø 0 into two constraints ons, by parameterizing everything
by s.

• At the maximum " L = 0: by contradiction, if " L > 0 then s!!
2 = 0 and

s!!
1 is larger than s1B (which cancels" L, it is deÞned by eq. 28) and solves

[(1 ≠ ! )
#pL

#e
+ !

#pH

#e
](b≠ s1)e" = (1 ≠ ! )pL + !p H

then #pL/#e(b≠ s!!
1 )e" > pL that is s!!

1 < s 1A($) (given by eq. 27) which
is lower than s1B($) when (R + b) Ø 2

Ô
2F% (proof of Proposition 5), a

contradiction.
• We can then deÞnes2(s):

s2(s) = F ≠ max
e

[p(e, $L)(R + s) ≠ f (e, $L)]

it is decreasing with respect tos with s"
2(s) = ≠pL. And s1(s) = s + s2(s) is

strictly increasing with respect tos (s"
1 = 1 ≠ p).

- For s = ≠R, s2(≠R) = F and the associateds1 is F ≠ R < 0.
- At s = s1B, the proÞt " L(e, s1B, 0) is null so that s2(s1B) = 0 , and s >
s1B … s2(s) < 0. Note also that s1B < b.
- At s = 0, s2(0) is positive equal to≠" L(e,0, 0).
- DeÞnes the solution of s + s2(s) = 0 , it is between≠R and 0. The corre-
spondings2 is such that " L(e,0, s2) = 0 .
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The regulatorÕs objective is then equivalent to the maximization of

max
s

V2(!, s, s 2(s)) s.t. s ! s ! s1B

The derivative of the objective function with respect tos is:

V(!, s ) =
!

(1 " ! )
"pL

"e
+ !

"pH

"e

"

(b" s)
1
#

" ! [pH " pL ]

=
!

(1 " ! )(1 " $L ) + ! (1 " $H )
"

(b" s)
1
#

" ! ($H " $L )(1 "
R + s

#
)

=
!

(1 " $L ) " 2! ($H " $L )
"

(b" s)
1
#

" ! ($H " $L )(1 " eF B ) using 8

=( $H " $L )
!

(! " ! )(b" s)/# " ! (1 " eF B )
"

in which

! =
1 " $L

2($H " $L )

This derivative is strictly decreasing with respect tos as long as! < ! .
It is also decreasing with respect to! for s < s1B .

For all s # [s, s1B ] we haveV(0, s) = (1 " $L )(b" s)/# > 0 and V(! , s) < 0.
So we already know thats!! (0) = s!!

1 (0) = s1B and s!!
2 (0) = 0 , and that,

$! > ! , s!! (! ) = s: s!!
1 (! ) = 0 and s!!

2 (! ) = s2(s) the solution of

pL (e)R + (1 " pL )s2 = F + f L (e)

And we can deÞne :

¥ ! 1 the solution of V(!, s 1B ) = 0

¥ ! 2 the solution of V(!, s ) = 0

Then the optimal solution as a function of! is such that

¥ 0 ! ! < ! 1: s!! (! ) = s!!
1 (! ) = s1B and s!!

2 (! ) = 0

¥ ! 1 ! ! < ! 2: s!! (! ) # (s, s1B ), s!!
1 (! ) > 0 and s!!

2 (! ) > 0

¥ ! 2 ! ! ! 1: s!! (! ) = s, s!!
1 (! ) = 0 and s!!

2 (! ) = s2(s) > 0

Then, the regulator should compareV2 and V1, the di!erence V2 " V1 is
decreasing with respect to! and positive for! = 0 and negative for! = 1 (by
Proposition 5). There is then a! 3 so that ! > ! 3 impliess!!

1 (! ) = s!!
2 (! ) = 0 .
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C.3 The optimal menu for the illustrating example

We now show that even with no constraints and a menu of contracts the
agency cannot implement the Þrst best.

The optimal scheme with asymmetric information and unconstrained sub-
sidy is a relatively standard mechanism design problem: the agency (the
principal) should propose a menu of couples{ (s1L , s2L ), (s1H , s2H )} to the
Þrm which self selects. The menu is designed so that a typei = L, H chooses
the item (s1i , s2i ). Several cases can arise whether only a high type or both
types deploy their project, and whether a low type exerts an e!ort.

For the sake of simplicity, and to focus on the role of asymmetric infor-
mation, contrary to previous sections we assume that the agency can capture
the rent from a high type.

Assumption 7 A Þrm cannot deploy a project without the consent of the
agency.

Furthermore, we assume that a low type project is worth implementing,
from a welfare perspective, even without e!ort. This assumption is satisÞed
in our numerical illustration. With this assumption it is always beneÞcial to
encourage the low type Þrm to invest.

Assumption 8 The low type is such that! L (R + b) ! F > 0.

With these two additional assumptions only two situations can arise. In both
situations a low type project is initiated with a sub-optimal e!ort, possibly
null, and a high type exerts an optimal e!ort. In one case a high type gets
a rent and the low type exerts an e!ort; in the other case, a high type gets
no rent and a low type exerts no e!ort.

Proposition 7 If the agency can propose a menu{ (s1L , s2L ), (s1H , s2H )} "
S2, under Assumptions 7 and 8, there is a threshold" menu that delineates
two cases.

In both cases, the high type exerts the Þrst best e!ort:s1H ! s2H = b, and
the low type gets a null proÞt. Furthermore:

¥ For " < " menu :

- The low type exerts a suboptimal e!ort with

s1L ! s2L = b!
" (! H ! ! L )

(1 ! " )(1 ! ! L ) ! " (! H ! ! L )
[# ! R ! b] (41)
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- The high type gets a positive informational rent.

• For ⁄ > ⁄menu :
- The low type exerts no e�ort: s1L ≠ s2L = ≠R

- Both the low and high type gets no profit: s2L = F and

s2H = F ≠ ◊H (R + b) ≠ (1 ≠ ◊H )
(R + b)2

2“
< 0

Proof.
The proof and the exposition are easier if we work withs = s1 ≠ s2 and

s2. The regulator proposes a menu{(sL , s2L ), (sH , s2H )}, and if a Þrm of
type i chooses the item(sj , s2j ) with i, j œ {H, L} it exerts the e!ort e(sj )
and gets

fiij = ◊i (R + sj ) + (1 ≠ ◊i )
(R + sj )2

2“
≠ F + s2j

and to further alleviate the exposition we denotepi = p(◊i , e(si )) and pHL =
p(◊H , e(sL )) .
• At the optimal menu m! both types initiate their project:

If the low type project is initiated so is the high type project.
The agency can propose a menu

m0 = {(sL , s2L ) = ( ≠R, F ),

(sH , sHL ) = ( b, F ≠ ◊H (R + b) + (1 ≠ ◊H )(R + b)2/(2“))}

with this menu the low type exerts no e!ort and gets zero proÞt, the agency
can then extract the maximum surplus from a high type. The agency still
gets a surplus from low types and cannot do better by discouraging low type
and only subsidizing the deployment of high types.
• The optimal menu m! solves:

max
m

⁄[pH (b ≠ sH ) ≠ s2H ] + (1 ≠ ⁄)[pL (b ≠ sL ) ≠ s2L ] (42)

subject to fiii Ø 0 for i = H, L, and fiii Ø fiij for i, j œ {H, L}.
Any menu with sL < ≠R (the e!ort of the low type being null) cannot

generate more surplus thanm0, m! is then either m0 with s!
L = ≠R or such

that s!
L > ≠R.
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Then, the only two binding constraints at the optimal menu are! LL ! 0
and ! HH ! ! HL becauseR + sL ! 0, so that ! HL > ! LL and at the optimal
schemes!

H > s !
L (to be checked at the end) so that(! HH " ! HL ) " (! LH "

! LL ) = ( "H " "L )(s!
H " s!

L ).
Then, if s!

L > " R a low type Þrm exerts an e!ort, write the Lagrangien

L (sL , s2L , sH , s2H ) = #[pH (b" sH ) " s2H ]+(1 " #)[pL (b" sL ) " s2L ]

+ µL ! LL + µH (! HH " ! HL ]

with µL and µH the Lagrange multipliers of the constraints! LL ! 0 and
! HH ! ! HL respectively. Then the optimal menu satisÞes the KKT condi-
tions:

$L
$sH

= #
$pH

$e
(b" sH )e" + ( µH " #)pH = 0 (43)

$L
$s2H

= µH " # = 0 (44)

$L
$sL

= (1 " #)
$pL

$e
(b" sL )e" + ( µL " (1 " #))pL " µH pHL = 0 (45)

$L
$s2L

= " (1 " #) + µL " µH = 0 (46)

Form eq. (43) and (44)s!
H = b. From eq. (44) and (46)µL = 1, and

together with eq. (44) it gives

(1 " #)(1 " "L )(b" sL )
1
%

= #(pHL " pL ) = #("H " "L )(1 "
R + sL

%
)

which, after some manipulations gives the expression (41) fors!
L in Propo-

sition 7. The optimal subsidys!
2L cancels a low type proÞt, and the subsidy

s2H is found with the constraint ! HH = ! HL .
If the above scheme can be implemented it outperformedm0. The subsidy

s!
L is decreasing with#, and #menu is the solution ofs!

L = " R (with the ex-
pression 41). Note that the denominator in (41) is positive for# # [0, #menu ].
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