Integrating electric vehicles and stationary electricity storages into decentralized energy systems with photovoltaic generation

Patrick Jochem, Katrin Seddig, Johannes Schäuble and Wolf Fichtner
Agenda

1. Introduction
2. Methodology and model structure
3. Results
4. Conclusion and Outlook
Motivation

Situation

The ongoing energy transition leads to
- build-up of photovoltaic (PV) systems
- growing share of electric vehicles (EV)
- declining battery costs

Challenge

- Fluctuation of power generation through RES
- An increasing number of EV cause
 - increase of energy consumption of a representative household
 - influence of the grid load (i.e. peak power)
- Local stationary or mobile storages might solve this challenge

Objective

- Use of different fleets of EVs as controllable loads
 - integration of PV power through smart charging
 - evaluation of uncertainties of PV generation and energy demand
Agenda

1. Introduction
2. Methodology and model structure
3. Results
4. Conclusion and Outlook
Overview model structure of the parking garage use case

Main assumptions:
- Simulation horizon (1 day)
- Temporal resolution (15min)
- $\sum EV \leq \sum Charging\ Points$
- Battery capacity: 24 kWh
- Average gross electricity consumption: 0.2 kWh/km
- Charging power 11 kW
- Marginal costs of PV = 0
- Charge only if connected

Further characteristics of the three EV fleets:
- Each EV fleet is modeled with a three-dimensional kernel density estimation (arrival and departure time, energy demand)
Uncertainties of RES generation

Fluctuation of PV generation over one year

For considering this uncertainty we constructed three scenarios for PV generation

1 Perfect Foresight
hypothetical a-priori known PV curves

2 Day-Ahead Foresight
prediction of the day-ahead PV generation

3 Historic Foresight
empirical perturbed forecast-curves reflecting the uncertainty with time series analysis (time-dependent normal-distribution)

Data source: Meteotest (2014)
Model conception for cost minimization with PV utilization

Perfect Foresight PV optimization (MILP)
Objective: Minimizing cost c of external needed charging power x
(with a-priori known PV curve)
$$\min_x C = \sum_t (c_t \cdot x_t)$$

Day-Ahead Foresight PV optimization (MILP)
1st stage objective: Planning with forecasted PV and energy demand
$$\min_x C = \sum_t (c_t \cdot x_t)$$

Deviation cost of realized day
2nd objective: Deviation of forecasted/realized PV and energy demand
$$\min_x C = \sum_t (a \cdot c_t \cdot \text{pos}(x_t^{\text{real}} - x_t) + b \cdot c_t \cdot \text{neg}(x_t^{\text{real}} - x_t))$$

Historic Foresight PV optimization & uncertain energy demand (Two-stage stochastic optimization with Sample Average Approximation (SAA))
Objective: Minimize the cost of the 1st stage decision plus the expected cost of the 2nd stage decision
$$\min_x \sum_t (c_t \cdot x_t) + E_\omega(Q(x, \omega))$$

With SAA
$$\min_x \sum_t (c_t \cdot x_t) + \frac{1}{N} \sum_{j=1}^N Q(x, \omega^j)$$

1st stage
- Pricing + scheduling

2nd stage
- Deviation price for volatile PV & energy demand

Dr. Patrick Jochem
Two-stage stochastic optimization with SAA

Objective

\[
\min_x C = \sum_t (c_t \cdot x_t) + \frac{1}{N} \sum_j (\sum_t (a \cdot c_t \cdot \text{pos}(x_{j,t}^{\text{scen}} - x_t) + b \cdot c_t \cdot \text{neg}(x_{j,t}^{\text{scen}} - x_t)) + s_{i,j} \cdot f)
\]

First stage
(costs for electricity from grid)

Second stage

Constraints First Stage

- Sum of all chargings fulfills demand of all accepted queries:
 \[
 \sum_t \frac{1}{4} \cdot p_{i,t} = d_i \quad \forall i
 \]

- Defines demand of all accepted queries:
 \[
 d_i = q_i \cdot v_i \quad \forall i
 \]

- At least 90% of queries are fulfilled:
 \[
 \Sigma_i q_i \geq 0.9 \quad \forall i
 \]

- Sum of overall charging considers global wattage limit:
 \[
 \sum_i p_{i,t} \leq GW \quad \forall t
 \]

- External needed charging power from the grid:
 \[
 x_t \geq \sum_i p_{i,t} - PV_t \quad \forall t
 \]

- Positive needed external charging power from the grid:
 \[
 x_t \geq 0 \quad \forall t
 \]

- No negative chargings:
 \[
 p_{i,t} \geq 0 \quad \forall i, t
 \]

Parameters

- EEX-Price: \(c\)
- Deviation penalty demand: \(a\)
- Deviation penalty supply: \(b\)
- PV power: \(PV\)
- Global Wattage: \(GW\)
- Local Wattage: \(LW\)
- Number of scenarios of SAA: \(N\)
- Penalty for not serving SAA scenario EV query: \(f\)

Indices

- Index for time steps: \(t\)
- Index for number of vehicles: \(i\)
- Index for number of scenarios of SAA: \(j\)

Variables

- External charging power from the grid: \(x\)
- External charging power from the grid, scenario: \(x_{\text{scen}}\)
- Binary if EV query is served: \(q\)
- Total EV demand: \(d\)
- Charging power: \(p\)
- EV query demand: \(v\)
- Binary if EV query is served in SAA scenario: \(s\)
Two-stage stochastic optimization with SAA

Objective

$$\min_x C = \sum_t (c_t \cdot x_t) + \frac{1}{N} \sum_j (\sum_t (a \cdot c_t \cdot \text{pos}(x^{\text{scen}}_{j,t} - x_t) + b \cdot c_t \cdot \text{neg}(x^{\text{scen}}_{j,t} - x_t)) + s_{i,j} \cdot f)$$

Second stage

(penalties for not meeting the load forecast)

Constraints Second Stage

Sum of all chargings and error term equal demand of all queries:

$$\sum_t \frac{1}{4} \cdot p^{\text{scen}}_{i,j,t} + e_{i,j} = d^{\text{scen}}_{i,j} \quad \forall i,j$$

Demand of all scenario queries:

$$d^{\text{scen}}_{i,j} = q_i \cdot v^{\text{scen}}_{i,j} \quad \forall i,j$$

Sum of overall scenario charging considers global wattage limit:

$$\sum_i p^{\text{scen}}_{i,t} \leq GW \quad \forall j, t$$

Required electricity from the grid:

$$x^{\text{scen}}_{j,t} \geq \sum_i p^{\text{scen}}_{i,j,t} - PV^{\text{scen}}_{j,t} \quad \forall j, t$$

Error term for infeasibility states in second stage:

$$e_{i,j} \leq s_{i,j} \cdot v^{\text{scen}}_{i,j} \quad \forall i,j$$

No discharge:

$$p^{\text{scen}}_{i,j,t} \geq 0 \quad \forall i,j,t$$

Positive error term:

$$e_{i,j} \geq 0 \quad \forall i,j$$

<table>
<thead>
<tr>
<th>Variables</th>
<th>Parameters</th>
<th>Indices</th>
</tr>
</thead>
<tbody>
<tr>
<td>External charging power from the grid</td>
<td>EEX-Price</td>
<td>t</td>
</tr>
<tr>
<td>Total EV demand</td>
<td>Deviation penalty demand</td>
<td>i</td>
</tr>
<tr>
<td>Charging power</td>
<td>Deviation penalty supply</td>
<td>j</td>
</tr>
<tr>
<td>PV power</td>
<td>Global Wattage</td>
<td></td>
</tr>
<tr>
<td>Binary if EV query is served</td>
<td>Local Wattage</td>
<td></td>
</tr>
<tr>
<td>EV query demand</td>
<td>Number of scenarios of SAA</td>
<td></td>
</tr>
<tr>
<td>Auxiliary variable for SAA scenario</td>
<td>Penalty for not serving SAA scenario EV query</td>
<td></td>
</tr>
</tbody>
</table>
Agenda

1. Introduction
2. Methodology and model structure
3. Results
4. Conclusion and Outlook
Load management of EV fleets with uncertain PV generation & energy demand

Charging load distribution of the three EV fleets after optimization with respect to PV integration and cost minimization

- All three EV fleets can use PV power for charging
- Long-term customers use the highest share of the PV power for charging
Cost evaluation of the uncertainty in PV generation and energy demand

Comparison of the different costs for the applied strategies

- Stochastic programming is important when considering charging costs.
- **Historic Foresight** scenario leads only to marginal cost reductions.
PV integration by EV charging

Comparison of the PV utilization of the applied strategies

- PV on parking garage is synergetic
Agenda

1. Introduction
2. Methodology and model structure
3. Results
4. Conclusion and Outlook
Conclusions

- Uncertainties of PV generation (time and load) and EV charging (arrival and departure time, required electricity) have an impact on charging costs and PV usage for charging.
- It is wise to use stochastic programming when evaluating the share of flexible loads (such as PV) for EV charging.
- Especially commuter vehicles are highly suitable to be charged by electricity from (local) PV generation.
- Parking garage operators can reduce their electricity demand from grid significantly if PV is installed.
- We see high synergies with the *decarbonisation* of transport.
Integrating electric vehicles and stationary electricity storages into decentralized energy systems with photovoltaic generation

Patrick Jochem, Katrin Seddig, Johannes Schäuble and Wolf Fichtner

Thank you for your kind attention!
jochem@kit.edu
Back up – Model structure

- Mobility Studies
- Car park data
- EV data
- EEX data
- PV data

- Mobility Applications
- Stochastic driving profiles
- EEX profiles
- PV profiles

- Sampling (Normal Distribution)
- Sampling Joint Dist. (multivariat random variables)

- Utilization of PV Charging costs
 - Qual./quant. analysis
 - Multivariate 1D-, 2D-, 3D-KDE
 - Bestfit cross-validation for bandwidth
 - inverse-transform-sampling
 - Kernel – gaussian

- Stochastic Programming
 - MILP
 - Two-stage SMILP
 - SAA
 - Scenario reduction (latin hypercube sampling)
 - Simulation

- Time series analysis

- Data
 - Method
 - Pre-results
 - Results

- Qual./quant. Analysis
- Intersection
- Interpolation

- Simulation perturbed forecast-curves
- Uncertain demand profiles
- perturbed forecast-curves

- Validation
- Convergence tests