Covid-19 and urban transport policy

Stef Proost (KULeuven (B))
Joint work with Bruno De Borger (U of Antwerp (B))
PROVISIONAL RESULTS
Research questions

• Why do public transport (PT) trips decrease
• What is the optimal reply of public transport to the Telework and Covid infection risks in Short term and in Long term
 • Fare?
 • Frequency (capacity)?
• Will deficits increase and how to cope with them?
Approach – Main assumption

• Covid-19 infection risk increases the objective health cost of PT and increases the perceived crowding cost
• We cannot identify precisely the objective risk of covid infection: no "natural" experiments with and without infection (PT operators vs virologists)
• But we see a strong revealed perceived Covid infection risk by a decrease of the PT use and its market share
• We take the perceived Covid risk as the revealed disutility of covid and this increased crowding externality will be used as externality
 • Distinguish between agents that are vulnerable (perceived) and non-vulnerable
Approach 2

• Simple Graphical exposition
 • Urban transport equilibrium before COVID
 • Urban transport equilibrium with COVID

• Some general results

• Case study illustration for Brussels
PRE-COVID URBAN TRANSPORT EQUILIBRIUM

Generalized price /trip

MSCroad

ACroad

2nd best subsidy

PT fare-Ptcost

Frequency cost ≈ crowding cost

PT Cost per passenger

User cost

Operator cost

PT Fare – PT

Frequency

+PT cost/pass

FIXED cost

Access

In-vehicle

Waiting time

road

Z

A

Z'

Public Transport
COVID URBAN TRANSPORT EQUILIBRIUM

STEP 1: TELEWORK

STEP 2: ADD COVID DISUTILITY

ACroad
MSCroad
AC PT Covid

Generalized price /trip

0 Road A' A'' A P' P'' Public Transport

TELEWORK

TELEWORK + COVID
General results 1

• TELEWORK
 • reduces demand for both transport modes
 • Reduces plausibly the PT fare and the PT frequency

• COVID discomfort
 • decreases market share of Public Transport
 • Optimal frequency may increase or decrease
 • Optimal fare may increase

• TELEWORK +COVID
 • Effect on deficit depends on
 • fare $>$ or $<$ cost per passenger
 • Frequency \uparrow or \downarrow as frequency is important cost element
General results 2

• TELEWORK +COVID

Treating vulnerable and non-vulnerable agents differently may improve welfare

Vulnerable agents have a higher WTP for space and one may reserve wagons for these agents

A separating equilibrium requires the vulnerable agents to pay more for their use of more spaced wagons or to be easily identifiable
Brussels (1M) case study: peak day before Covid

Baseline has a 2nd best subsidy
Covering the external crowding cost
so that
Baseline fare = 0

Subsidy is paid by employers
Subsidy paid by government

Brussels (1M) case study: peak day before Covid

Access
In vehicle
Waiting costs

Vehicle
Fuel
Time costs
+ pollution and climate costs

€/trip

Relative volumes in morning peak

Road non-school

PT non-school

PT school

Captive Users

ACroad

MCroad

MC(PT)

AC(PT-non-school)

AC(PT-school)

150

210

250
Results on fare, frequency, welfare, deficit – if only TELEWORK – shock

<table>
<thead>
<tr>
<th>TELEWORK</th>
<th>PT work</th>
<th>PT school</th>
<th>Frequency/h</th>
<th>Car gen. price</th>
<th>Deficit Absolute terms</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline 0%</td>
<td>60</td>
<td>40</td>
<td>10</td>
<td>4</td>
<td>100</td>
</tr>
<tr>
<td>25%</td>
<td>13</td>
<td>30</td>
<td>5</td>
<td>4</td>
<td>111</td>
</tr>
<tr>
<td>25%</td>
<td>0</td>
<td>30</td>
<td>3 (best)</td>
<td>4,1</td>
<td>75</td>
</tr>
<tr>
<td>50%</td>
<td>6</td>
<td>20</td>
<td>6</td>
<td>3,5</td>
<td>90</td>
</tr>
<tr>
<td>50%</td>
<td>0</td>
<td>20</td>
<td>3 (best)</td>
<td>3,6</td>
<td>50</td>
</tr>
</tbody>
</table>
Results on fare, frequency, welfare, deficit – TELEWORK+ COVID (discomfort +50%) shocks

<table>
<thead>
<tr>
<th>TELEWORK</th>
<th>PT work</th>
<th>PT school</th>
<th>Frequency/h</th>
<th>Car gen. price</th>
<th>Deficit Absolute terms</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline 0%</td>
<td>60</td>
<td>40</td>
<td>10</td>
<td>4</td>
<td>100</td>
</tr>
<tr>
<td>25%</td>
<td>28</td>
<td>30</td>
<td>10</td>
<td>3,8</td>
<td>125</td>
</tr>
<tr>
<td>25%</td>
<td>0</td>
<td>30</td>
<td>3 (best)</td>
<td>4,1</td>
<td>75</td>
</tr>
<tr>
<td>50%</td>
<td>12</td>
<td>20</td>
<td>10</td>
<td>3,5</td>
<td>147</td>
</tr>
<tr>
<td>50%</td>
<td>0</td>
<td>20</td>
<td>3 (best)</td>
<td>3,6</td>
<td>50</td>
</tr>
</tbody>
</table>
Conclusions

• TELEWORK leads to lower frequency for PT and reconsideration of 2nd best subsidy as there is less road congestion

• TELEWORK + COVID leads to probably even lower frequency for PT as keeping a high frequency will less passengers is costly strategy

• TELEWORK +COVID makes it
 • Interesting to separate vulnerable and non-vulnerable users
 • To ease the pressure on PT by stimulating the use of “soft” modes for school and other journey purposes

• DEFICIT will increase if one does not decrease strongly the frequency of PT