The Tradeoff between Indirect Network Effects and Product Differentiation in a Decarbonized Transport Market
(CESifo WP8298)

Gøril L. Andreassen and Knut Einar Rosendahl
School of Economics and Business
Norwegian University of Life Science

International Webconference on Mobility Challenges, December 2020
Introduction: Decarbonization of road transport

• EU climate targets:
 – Medium-term: Reduce GHG emissions by 55% in 2030 vis-à-vis 1990
 – Long-term: Net-zero emissions by 2050

• Road transport sector
 – Important source of GHG emissions (one fifth of EU’s GHG emissions)
 – Switch from fossil to non-fossil technologies
 • European Commission target: 30 million zero-emission cars by 2030
 • Norway: Ban on sales of new fossil-based private cars from 2025

• Different non-fossil vehicle technologies exist
 – Biofuels – sustainable in the long run?
 – Electric vehicles
 – Hydrogen vehicles
Introduction: Electric and/or hydrogen vehicles?

Optimal with one or two non-fossil vehicle technologies?

What will the market choose?
What should the government do?
Introduction: Electric and/or hydrogen vehicles?

• Optimal with one or two non-fossil vehicle technologies?

• Different characteristics
 – Imperfect substitutes – product differentiation
 → Two alternatives better than one

• Indirect network effects
 – The utility a consumer gets from a good depends (indirectly) on the number of users who are in the same network (Katz & Shapiro, 1985)
 • Through the number of charging/filling stations
 → One “big” network better than two “small”
Introduction: Indirect network effects

• Coordination problem:
 – Demand for the vehicles depends on the availability of charging/filling stations
 – Investments in charging and filling stations depends on the number of vehicles

• Some relevant literature:
 – Katz and Shapiro (AER, 1985); Farrell and Saloner (AER, 1986)
 – Greeker and Midttømme (JPubE, 2016); Zhou and Li (JIE, 2018)
 – Meunier and Ponssard (EER, 2020)
Introduction: Research questions

• Trade-off between
 – Indirect network effects
 – Benefit of product differentiation

1. What factors determine whether there will be, or should be, one or two technologies in a decarbonized road transport market?
 – In the market without policies (BAU)
 – In the optimal solution

2. What policies should governments choose (first and second best)?

• Theoretical and numerical analysis
Introduction: Preview of findings

• Zero, one or two positive equilibria possible for each technology
 – Depends e.g. on the number of vehicles for the other technology

• With two equilibria, one is stable and the other is unstable
 → Lock-in situation is possible

• Choice of policy:
 – First-best: Subsidy of the monopoly markup on charging/filling
 – Additional stimulus may be needed to pass unstable equilibrium
 – Second-best policy cheaper for the government
Analytical model

• Static, partial equilibrium model for road transport sector
 – Private cars, buses, trucks etc

• Two types of economic agents
 – Representative consumer that buys and uses electric and/or hydrogen vehicles
 • Assume only one vehicle model of each technology (only non-fossil vehicles)
 • The two vehicle technologies are imperfect substitutes
 • Prices of vehicles are exogenous (e.g. imported)
 – Firms supplying the network of charging and filling stations
 • Monopolistic competition in the station market
 • Free entry → Zero profit

• Two competing, incompatible networks of charging and filling stations
 – Decisions of the two agents are interlinked through the indirect network effects
Existence and number of equilibria

• Derive two expressions that must hold in equilibrium
 – For both technologies

• Demand for vehicles \((x_i) \) as a function of number of stations \((M_i) \):

\[
x_i(M_i, x_{-i}) = g(M_i, x_{-i}) = A_i(x_{-i}) + B_i M_i^{\zeta_i}
\]

• Number of stations as an implicit function of number of vehicles:

\[
x_i(M_i) = h(M_i) = C_i M_i^{\gamma_i}
\]

• Both \(g(M_i, x_{-i}) \) and \(h(M_i) \) are increasing and concave in \(M \)
 – \(g(M_i, x_{-i}) \) is «more concave» than \(h(M_i) \) \((\zeta_i < \gamma_i) \)
 – \(g(M_i, x_{-i}) \) is decreasing in \(x_{-i} \)
Three alternative cases for each technology

• Case I: One equilibrium
 – $A_i > 0$
 – Stable equilibrium

• Case II: Two equilibria
 – $A_i < 0$
 – Equilibrium with smallest (largest) values is unstable (stable)

• Case III: No equilibria
 – $A_i < 0$
 – $g(M_i, x_{-i}) < h(M_i)$ for all M_i
Likelihood of case I

- The likelihood of being in case I increases with:
 - The lower the price of the vehicle (and the higher the vehicle subsidy)
 - The higher the utility of the first vehicle
 - The fewer the number of vehicles of the other technology, and the lower the substitutability between the two technologies
Likelihood of equilibrium

- The likelihood of having an equilibrium also increases with (case I or II instead of case III):
 - The smaller the fixed costs for stations (and the higher the station subsidy)
 - The smaller the marginal costs for charging/filling (and the higher the subsidy to charging/filling)
 - The higher the utility of the charging/filling
First- and second-best policy

First-best policy:

• Subsidizing the markup on charging/filling: \(s = 1 - \rho \)

• However: This may not be sufficient to pass an unstable equilibrium

Second-best policy:

• What if subsidies to charging/filling are not feasible or too costly for the government?

 – Consider subsidy to stations and/or vehicles in simulation model
Calibration of numerical model

• Calibrated to a future vehicle market in Norway
 – With only electric vehicles (EVs) and/or hydrogen vehicles (H2Vs)
 – Use various data from the Norwegian vehicle market
 • More information exist about EVs than H2Vs

• Much uncertainty due to
 – Technological progress for vehicles and stations
 – Future market structure
 – Consumers' utility from owning and using the vehicles
Only electric vehicles (EVs)

- We first consider a market with only EVs
 - EVs have gotten a head start over H2Vs (Norway: 50% of car sales)
- We are in case I (one equilibrium)
- Comparing BAU with First-best:
 - Total charging per vehicle drops 47%
 - No. of stations drops 52%
 - No. of vehicles drops 10%
 - Total welfare (road transport) drops 6%
- We also examine hypothetical market with only H2Vs
Interaction between technologies

- How does the number of vehicles of one technology depend on the number of the other type of vehicles?
 - Depends on substitutability between EVs and H2Vs – consider two alternatives
 - «Close» and «Distant»
 - Construct «reaction functions»
 - Where do they intersect?
- Close substitutes (First best):
 - Five equilibria
 - 1 and 5: Only one technology
 - 2 and 4: Unstable equilibria
 - 2: Unstable for H2Vs
 - 4: Unstable for EVs
 - 3: Stable equilibrium with 2 tech.
Interaction between technologies – first best

• How does equilibrium #3 (two technologies) compare with equilibria #1 and #5 (one technology)?

• Close substitutes (first best):
 • EVs drop 36%; H2Vs drop 51% → 29% more vehicles in total
 → EV market share 56%
 • No. of charging and filling stations drop 39% and 53%
 • Welfare increases by 2% (12%)
 vis-a-vis EV (H2V) alone
 → Only moderate welfare gains from two technologies
 • No feasible BaU-equilibrium with both technologies
One or two technologies in first best?

- How does equilibrium #3 (two technologies) compare with equilibria #1 and #5 (one technology)?
 - For different levels of substitutability (ϕ)
- Large welfare gains when technologies are distant substitutes
- When technologies are sufficiently close substitutes, only one technology can sustain
 - With first-best policy
- For some levels of substitutability (ca. $\phi = 5$), both technologies can sustain even though only EVs is best

Level of ϕ:
- Perfect subst.: $\phi = 6.8$
- Close subst.: $\phi = 4.5$
- Distant subst.: $\phi = 2.3$
Second best solutions

- Is first-best policy feasible/desirable?
 - More common to subsidize stations and/or vehicles

- Consider two alternative second-best policies:
 - Second-best I: Subsidies only to charging and filling stations
 - (Second-best II: Subsidies to charging and filling stations and to vehicles)

- Second-best I (close):
 - Subsidy rates: 42-47%
 - Much closer to first best than to BAU
 - Except for charging/filling
 - No. of EVs and charging stations almost identical to first best
Second best solutions

- Second-best I (close) – cont.:
 - H2Vs more negatively affected than EVs
 - Compared to first-best
 - Welfare is halfway between first best and BAU
 - Public expenditures reduced
 >50% compared to first best

- Second-best II (close):
 - Not much to gain compared to Second-best I
 - Almost as high public expenditures as in first best
Conclusions

• Important policy questions for the coming decade:
 – One or two zero-emission vehicle technologies? Let the market decide?
 – What is optimal policy?

• The answer depends in particular on:
 – The utility of owning vehicles relative to the utility of charging/filling
 – Prices/costs related to the vehicles, stations and charging/filling
 – The substitutability between the technologies
 – The number of vehicles of the other technology

• First best policy: Subsidy to charging/filling
 – Second best subsidies to stations better alternative?

• More stimulus may be needed temporarily to overcome critical mass
THANKS FOR THE ATTENTION!