

SOCIO-ECONOMIC IMPACTS OF CLIMATE CHANGE IN VIETNAM: A MACROECONOMIC ASSESSMENT

2021

GEMMES Vietnam project

espagnee@afd.fr

#WorldInCommon agence française de développement i french development agency

Outlines

- 1 Context and Objectives
- 2 Method
- 3 The model
- 4 Direct damages
- 5 Macro impacts
- 6 Conclusion

Vietnam and Climate change

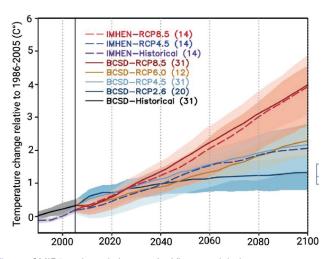


Figure: CMIP5 projected changes for Vietnam global mean temperature

■ Nationally Determined Contribution

UPDATED NATIONALLY DETERMINED CONTRIBUTION (NDC)

 By 2030: 9% compared to the BAU scenario (with domestic resources), max 27% (with international support)

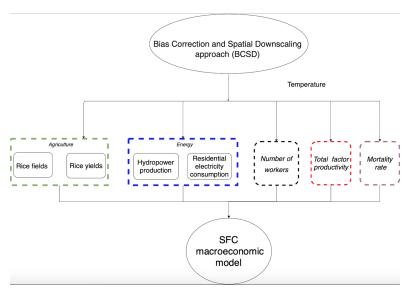
Nationally Determined Contribution (con't)

Financial resources

- Central and local budgets including ODA
- Domestic and international specialised funds related to climate change response support
- Investment capital from the domestic private sector and FDI
- Investment by individuals and households

Objectives

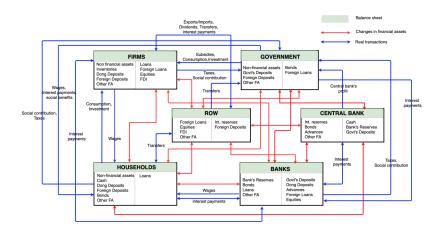
To propose an economy-wide assessment of the social and economic effects of climate impacts on the Vietnamese economy as a whole using an integrated macroeconomic framework


Outlines

- 1 Context and Objectives
- 2 Method
- 3 The model
- 4 Direct damages
- 5 Macro impacts
- 6 Conclusion

■ Following Hsiang et al. (2017)

- Sectoral damage function calculation
- Valuation of direct damages by sector
- Aggregate national-level damage function:
 - summing sectoral damage functions to obtain the cumulative direct impacts
 - applying the direct damage impacts to the stock-flow coherent macroeconomic model


■ Macroeconomic impacts framework

Stock-flow consistent modelling

- Integrating the financial and the real sides of the economy in a common analysis framework
- Godley & Tobin (70s), Godley & Lavoie (2007)
- Accounting consistencies
 - Flow consistency
 - Stock consistency
 - Stock-flow links
- Dynamic behaviours
 - How economic agents determine and finance their expenditures?
 - How economic agents allocate their wealth?
 - Specify the productivity growth, wages and inflation
 - Financial flows

Circular flow of the economy and balance sheet structure

■ Simplified balance sheet of Vietnam

	Firms	Central Bank	Banks	Government	Households	RoW	Total
Non-financial assets	$p_{\kappa}k^{f}$			$p_{\kappa}k^{g}$	$p_{\kappa}k^{h}$		p _K k
Inventories	$p_{K_{12}}k_{12}$						$p_{K_{12}}k_{12}$
Intl. reserves		RESusxr				-RES _{us} xr	0
Cash		-H			Н		0
Bank's Reserves		−MB ^{cb}	MB ^{cb}				0
Governments's Deposits		−GM ^{cb}	−GM ^b	GM			0
Dong Deposits	DM ^f		-DM		DM ^h		0
Foreign deposits	FM ^f _{us} xr		İ	FM ^g _{us} xr	FM ^h us xr	−FM _{us} xr	0
Bonds		B ^{cb}	B ^b	− B	B^h		0
Advances		LB ^{cb}	-LB ^{cb}				0
Loans	$-L^{f}$		L		$-L^h$		0
Foreign loans	-FL _{us} xr		-FL _{us} xr	−FL ^g _{us} xr		FL _{us} xr	0
Equity	$-p_E E^f$		-p _E E ^b		p∈E ^h	$p_{\varepsilon}E^{r}$	0
Foreign direct investment	-p _{FDI} FDI _{us} xr		İ			p _{FDI} FDI _{us} xr	0
Other accounts r/p	OTA ^f	OTA ^{cb}	OTA ^b	OTA ^g	OTA ^h	OTA ^r	0
Net Wealth	NWf	NW ^{cb}	NWb	NW ^g	NW ^h	NW ^r	$\mathbf{p}_{\mathbf{K}}\mathbf{k}+\mathbf{p}_{\mathbf{K}_{12}}\mathbf{k}_{12}$

■ Non-financial transactions (Uses-resources tables)

				_				1
	Firms	Central Bank	Bunks	Government	Households	RoW	Total	
Imports						p _{tM} im	PIMIM	
Exports						$-p_Xx$	$-p_Xx$	
Trade balance (X - IM)							-TB	
Production	p_rq^f		$p_T q^b$	$P_Y q^g$	p_Tq^{Λ}		p_Yq	David and a second
Intermediate Consumption	$-\theta^I p_Y va^I$		$-\theta^b p_T v a^b$	$-\theta^q p_T v a^q$	$-\theta^h p_Y va^h$		$-p_Yic$	Production account
Value added	p _v va ^f		p _v va ^b	p _v va ^g	p _v va ^h		p _v va	
Wages + inc from abroad	$-\lambda^f w N$		$-\lambda^b w N$	$-\lambda^g wN$	$-\lambda^h w N$	$-WB^{r}$	0	7
					$+wN + WB^{\tau}$			
Labor/social contributions	$-\alpha^f W B^f$		$-\alpha^b W B^b$	$-\alpha^g W B^g$	$-\alpha^k W B^k$		0	
				+SOC				
Indirect taxes (VAT included)	$-\tau_p^f p_T q^f - \tau^r p_{IM} im$		$-\tau_{\mu}^{b}p_{Y}q^{b}$	$-\tau_{p}^{g}p_{Y}q^{g}$	$-\tau_p^h p_r q^h$		0	Operating account
				$+ \tau_{VAY} p_Y va + TP$, J
Subsidies	$\tau_{zv uv p_Y q^f}$			$-\tau_{svav}p_rq^f$			0	
Adjustment (*)	$\chi^{f}Y$				$\chi^h Y$		ADJ	
Gross operating surplus	Ff		F ^b	Fe	Fh		FT	
Interest on gov deposits		$-r_mGM^{ob}_{-1}$	$-r_mGM_{-1}^b$	r_mGM_{-1}			0	-
Interest on deposits	$r_m DM_{-1}^f$		$-r_m DM_{-1}$		$r_m DM_{-1}^h$		0	
Interest on bonds		$r_bB_{-1}^{ab}$	$r_b B_{-1}^b$	$-r_{b}B_{-1}$	$r_bB_{-1}^h$		0	
Interest on advances		$r_l^{ab}LB_{-1}^{ab}$	$-r_{l}^{cb}LB_{-1}^{cb}$				0	
Interest on loans	$-r_1L_{-1}^f$		$r_1L_{-1}^b$		$-\eta L_{-1}^{h}$		0	Allocation of primary
Interest on foreign loans	$-r_{fl}FL_{ns-1}^{f}xr_{-1}$		$-r_{fl}FL_{ns-1}^bxr_{-1}$	$-r_{fl}FL_{ns-1}^{g}xr_{-1}$		$r_RFL_{us_{-1}}xr_{-1}$	0	income account
Dividends	$-\phi F_{-1}^{f}$					ϕF_{-1}^{I}	0	medine account
Central Bank's profits		$-F^{cb}$		Peb.			0	
Primary income balance	YPf		YPb	YPs	YPh		YP	
Income taxes	$-\tau^f Y P_{-1}^f$		$-\tau^{k}YP_{-1}^{k}$	DT	$-\tau^h Y P_{-1}^h$		0	5
					$-\tau_w WB$			
Social benefits				$-\gamma_{xxx}YP^{h}$	$\gamma_{xxx}YP^{h}$		0	De distribuntion of in comm
Cur. tr. from abroad (public)				TR_{a}^{r}		$-TR_a^r$	0	Redistribution of income
Cur. tr. to abroad (private)					$-TR_{\epsilon}^{o}$	TRE	0	account
Cur. tr. from abroad (private)					TR_n^e	$-TR_n^p$		decount
Gross disposable income	YDf		YD^b	YD8	YDh	· ·	YD	
Consumption					-p _C c		-p _C c	15
Public current expenditure				$-p_0g$			$-p_0g$	Use of income account
Gross savings	Sf.		Sp	Ss	Sh		s	osc of income account
Gross fixed capital formation	$-p_K i^f$			$-p_K i^g$	$-p_K i^h$		$-p_K i$	15
Changes in inventories	$-p_{\kappa_{12}}i_{12}$						$-p_{K_{12}}i_{12}$	 Capital account
Net fin. capacity	NFC ^f	0	NFC ^b	NFC8	NECh	NFC*	0	
	1			1				·

■ Flow of funds

Net fin. capacity	NFC ^f	0	NFC ^b	NFCg	NFC ^h	NFC	0
Δ val. in Intl. reserves		-∆RES _{us} xr				ΔRES _{us} xr	0
Δ val. in Cash		ΔH			$-\Delta H$		0
Δ val. in Bank's Reserves		∆MB ^{cb}	-∆MB ^{cb}				0
Δ val. in Gov's Deposits		ΔGM^{cb}	ΔGM^b	$-\Delta GM$			0
Δ val. in Dong Deposits	$-\Delta DM^f$		ΔDM		$-\Delta DM^h$		0
Δ val. in Foreign deposits	$-\Delta FM_{us}^{f}xr$			$-\Delta FM_{us}^g xr$	$-\Delta FM_{us}^{h}xr$	∆FM _{us} xr	0
Δ val. in Bonds		$-\Delta B^{cb}$	$-\Delta B^b$	ΔB	$-\Delta B^h$		0
Δ val. in Advances		−ΔLB ^{cb}	ΔLB^{cb}				0
Δ val. in Loans	ΔL^f		$-\Delta L$		ΔL^h		0
Δ val. in Foreign loans	$\Delta FL_{us}^{f}xr$		$\Delta FL_{us}^{b}xr$	$\Delta FL_{us}^g xr$		$-\Delta FL_{us}xr$	0
Δ val. in Equity	$p_E \Delta E^f$		$p_{E}\Delta E^{b}$		$-p_{\varepsilon}\Delta E^{h}$	$-p_{\varepsilon}\Delta E^{r}$	0
Δ val. in FDI	$p_{FDI}\Delta FDI_{us}xr$					-p _{FDI} ∆FDI _{us} xr	0
Δ val. in Other accounts r/p	$-\Delta OTA^f$	−Δ <i>OTA^{cb}</i>	$-\Delta OTA^b$	$-\Delta OTA^g$	$-\Delta OTA^h$	$-\Delta OTA^r$	0
Net lending/Borrowing	NLPf	0	NLPb	NLP ^g	NLPh	NLP	0

Outlines

- 2 Method
- 3 The model
- 4 Direct damages
- 5 Macro impacts
- 6 Conclusion

■ Supply - Production

- Economic structure with six sectors: agriculture, energy, industry, financial services, public services and services
- Adaptive expectations

$$q_t^e = \gamma_q * s_t^e + (1 - \gamma_q) * i_{12_{t-1}}$$
 (1)

Expected sales of firms

$$s_t^e = (1 + pop_{gr} + prod_{gr}) * s_{t-1}$$
 (2)

Total sales

$$s_t = c_t + i_t^f + i_t^g + i_t^h + g_t + x_t + ic_t$$
 (3)

Domestic production

$$q_t = q_t^e - im_t \tag{4}$$

2021

Households

- Use their disposable income to consume, invest and accumulate financial assets (cash, deposits, equities, government bonds)
- Consumption

$$c_t = f(yd_t^h, nw_{t-1}^h) (5)$$

Household's investment

$$i_t^h = f(nw_{t-1}^h, r_{l_{t-1}} - \pi_{t-1})$$
 (6)

- Borrow from banks for their investment
- Impact of climate change through different channels: the number of working hours they can dedicate to the firms; their productivity declines if they are caught by an infectious disease; the aggregate mortality rate of the population.

■ Firm's investment and Financing

Firm's investment

$$\frac{\Delta k^f}{k_{t-1}^f} = f(\frac{y_{t-1}}{y_{t-1}^*}, r_t - \pi_t) \tag{7}$$

- Financing of firm's investment: using retained profits, borrowing from banks or abroad, issuing equities or attracting FDI.
- Impact of climate damages: agriculture (rice yields, rice fields), energy sectors (electricity demand and the hydropower sector), total factor productivity (investment, FDI...).

Openess

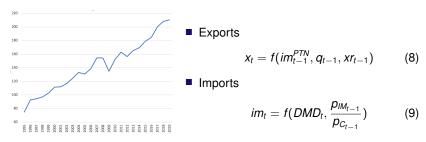
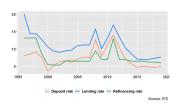



Figure: Openess, %GDP

Central bank and monetary policy

 Refinancing rate: function of the level of inflation, the US interest rate and the exchange rate

$$r_{l_t}^{cb} = f(xr_t, r_{l_t}^{us} - r_{l_{t-1}}^{cb}, \pi_{t-1})$$
 (10)

Lending rate

$$r_{l_t} = f(r_{m_t}) \tag{11}$$

Deposit rate

$$r_{m_t} = f(r_{l_t}^{cb}) \tag{12}$$

■ International reserves and exchange rate

Figure: FX reserves, %GDP

International reserves

$$\Delta RES_t = f(\Delta x r_t) \tag{13}$$

Exchange rate

$$xr_{t} = f(xr_{t-1}, \frac{D_{t-1}^{FX} - S_{t-1}^{FX}}{S_{t-1}^{FX}})$$
 (14)

- FX demand: imports, interest payments, current transfers...
- FX supply: exports, wages from abroad, interest receives, remittances, capital inflows (FDI, portfolio investments)

Credit rationing

Firms - Loans to Value (LTV)

$$LTV_t^f = min\left(0.7, \frac{L_t^{fD}}{NW_{t-1}^f}\right) \tag{15}$$

Households - Debt to Income (DTI)

$$DTI_{t}^{h} = min\left(0.4, \frac{ITLH + \Delta L_{t}^{hD}}{YP_{t}^{h}}\right)$$
 (16)

■ Public debt and the debt rule

Figure: Public debt, %GDP

Desired financing needs

$$NFC_t^{gD} = S_t^g - p_{\kappa_t} i_t^{gD}$$
 (17)

Public debt rule

$$DEBT_{G_t}^R = min(0.65, \frac{DEBT_{G_t}^D}{Y_{t-1}})$$
 (18)

Effective public investment

$$i_t^g = \frac{S_t^g - NFC_t^g}{p_{\kappa_t}} \tag{19}$$

Outlines

- 1 Context and Objectives
- 2 Method
- 3 The model
- 4 Direct damages
- 5 Macro impacts
- 6 Conclusion

Agriculture

Modelling implications

• We define the effective agricultural production $(Q_{A_t}^*)$

$$Q_{A_t}^* = (1 - D_{AGR_t} * \gamma_{RICE}) * Q_{A_t}$$
 (20)

- \blacksquare γ_{RICE} : Part of rice in agriculture
- \blacksquare Q_{A_t} : Agricultural production of baseline scenario
- *D_{AGRt}*: Production loss due to climate change

$$D_{AGR_t} = -6.9 * \Delta T \tag{21}$$

■ Agriculture - Meta-analysis

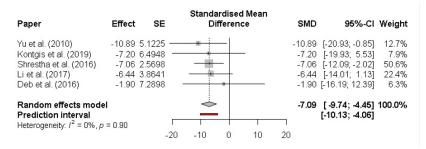


Figure: Meta analysis of the results reported in 5 selected published papers, on the impact of an increase of one degree of temperature on rice yield in percentage points. The weight given to each study result is calculated according to the 95% confident Intervals of the estimates. Effect: impact on rice yield (in %), SE: Standard Error (in %) SMD: Standard Mean Difference (in %)

■ Agriculture - Monte carlo simulation

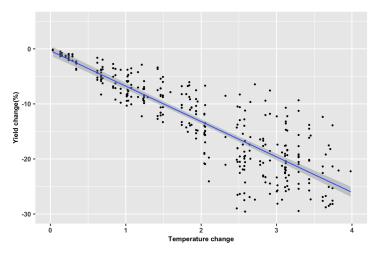


Figure: Average yield change over the period 2020-2099 as a function of VNMST change 2020-2099 relative to 1997-2019

Energy

Modelling implications on energy supply

lacktriangle We define the effective energy production $(Q_{E_t}^*)$

$$Q_{E_t}^* = (1 + D_{E_t} * \gamma_{HP}) * Q_{E_t}$$
 (22)

- \blacksquare γ_{HP} : Part of hydropower on the energy sector
- \blacksquare Q_{E_t} : Energy production of baseline scenario
- D_{E_t}: Hydropower impact

$$D_{E_t} = 0.055 * \Delta T - 0.016 * \Delta T^2$$
 (23)

■ Energy (con't)

Modelling implications on energy demand

■ We define the effective final consumption (C_t^*)

$$C_t^* = (1 + D_{RE_t} * \gamma_{RE}) * C_t$$
 (24)

- \blacksquare γ_{RE} : Part of electricity consumption
- lacksquare C_t : HH's consumption
- *D_{RE_t}*: Residential electricity consumption impact

$$D_{RE_t} = 1.033 * \Delta T \tag{25}$$

Energy

- Auffhammer & Mansur (2014), Yalew et al. (2020): climate change impacts both energy supply and demand
- Supply side: changes in precipitation and temperature can affect the energy production capacity, the transmission systems or the infrastructure itself (World Bank (2011), Ciscar & Dowling (2014), Perera et al.(2020)).
- Demand side: rising temperature and weather extremes in recent years are strongly affecting the residential electricity demand

Impact on hydropower production

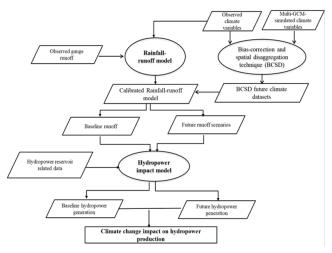
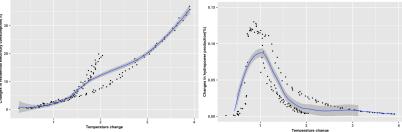



Figure: Methodology applied to model the impacts of climate change on hydropower production

■ Energy (con't)

Data: Viet Nam Household Living Standard Survey (VHLSS); FAO Rivers in South and East Asia and HydroBASINS, HydroSHEDS void-filled DEM, Digital Soil Map of the World version 3.6, UMD Land Cover classification collection VnGP and VnGC dataset, Institute of Energy Vietnam's Hydro-Meteorological Data Center

Average residential electricity demand changes over the period 2020-2099 as a function of VNMST change 2020-2099 relative to 1997-2019

Average change in hydropower production over the period 2020-2099, as a function of VNMST change 2020-2099 relative to 1997-2019

Labor productivity

Modelling implications

■ We define the effective number of workers (NBW_t^*)

$$NBW_t^* = (1 - D_{L_t}) * NBW_t$$
 (26)

- NBW_t : Number of workers of baseline scenario
- D_L,: Labor productivity loss due to climate change

$$D_{L_t} = -2.6 * \Delta T \tag{27}$$

Labor productivity (con't)

Kjellstrom, et al. (2009a): Workplace heat stress and health

- Clinical health effects
- Work capacity affected and hourly work output reduced

Kiellstrom, et al. (2013): Mapping Occupational Heat Exposure and Effects in South-East Asia: Work loss" due to heat Kjellstrom, et al. (2014): Occupational Heat Stress

■ In 2030, Heat loss could represent 5.7% of Vietnam's GDP

UNDP (2016): Climate change and labour: Impacts of heat in the workplace

■ Labor productivity (con't)

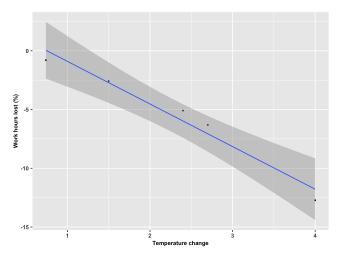


Figure: Average working hours lost over the period 2020-2099 as a function of VNMST change 2020-2099 relative to 1997-2019

Mortality

Modelling implications

■ We define the effective number of workers (MORT*_{GRt})

$$MORT_{GR_t}^* = (1 + D_{M_t}) * MORT_{GR_t}$$
 (28)

- *MORT_{GR_t}*: Mortality rate of baseline scenario
- \blacksquare D_{M_t} : Mortality damage

$$D_{M_t} = 2.8 * \Delta T \tag{29}$$

■ Mortality (con't)

- Gasparrini et al. (2017): negative impacts of climate change which potentially produce an increase in mortality
- Guo et al. (2018): heatwave-related excess mortality increases the most in tropical and subtropical countries/regions
- WHO (2014): relative increase in excess deaths from 2030 to 2050 including South-East Asia
- Vicedo-Cabrera et al. (2018): Paris Agreement could contribute to avoid an increase of temperature-related mortality
- Valuation by using the Value Statistical Life (VSL)

■ Mortality (con't)

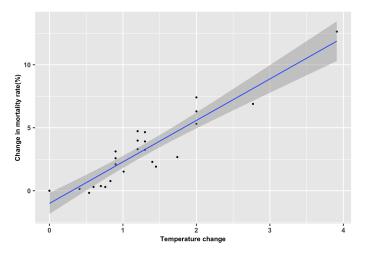


Figure: Change in mortality rate over the period 2020-2099 as a function of VNMST change 2020-2099 relative to 1997-2019

■ Total factor productivity

Modelling implications

■ We define the effective number of workers (TFP_t*)

$$TFP_t^* = (1 - D_{TFP_t}) * TFP_t$$
 (30)

- *TFP_t*: TFP of baseline scenario
- \blacksquare D_{TFP_t} : Damage on TFP

$$D_{TFP_t} = -3.59 * \Delta T \tag{31}$$

■ Total factor productivity (con't)

- Letta and Tol (2016): a negative relationship in poor countries but indistinguishable from zero in rich countries
- Dietz and Stern (2015): test the macroeconomic impacts when TFP is hit.
- Moore and Diaz (2015): increased impacts.
- Moyer et al. (2014): future impact of global warming on TFP growth.
- Vietnam: TFP is expected to contribute 45-47 % of GDP growth

■ Total factor productivity (con't)

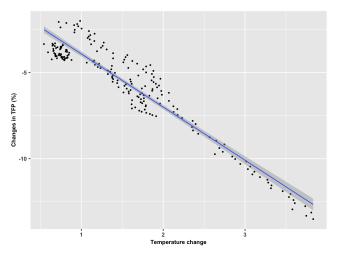


Figure: Change in TFP over the period 2020-2099 as a function of VNMST change 2020-2099 relative to 1997-2019

■ Infectious diseases

- Rocque et al. (2021)): negative impacts on health outcomes (e.g. infectious diseases, mental health..)
- Chapter 3 of the GEMMES project report: effect through the loss in labor productivity (average hourly wage)
- \blacksquare 1% increase of disease infections \rightarrow 0.049%decrease in the average hourly wage
- Infection will increase by 29% by 2050 under both RCP4.5 and RCP8.5 and by 36% by 2100 under RCP8.5 (without adaptation).
- Valuation of infectious diseases damage by the wage lost.

Aggregate sectoral damages

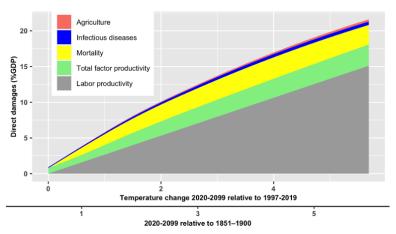


Figure: Total direct damage to the Vietnamese economy by different sectors as a function of VNMST change 2020-2099 (contemporary climate) and relative to 1851-1900 (pre-industrial climate)

Outlines

- 1 Context and Objectives
- 2 Method
- 3 The model
- 4 Direct damages
- 5 Macro impacts
- 6 Conclusion

■ Simulation

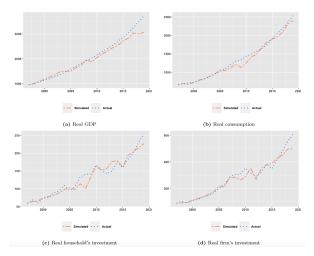


Figure: GDP components

■ Simulation (con't)

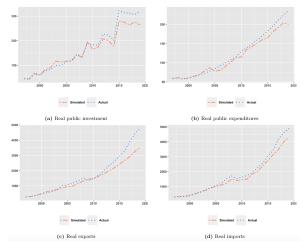


Figure: GDP components (con't)

■ Baseline scenario

Table: Main assumptions for exogenous variables

Population in 2040	United Nation's population projections for Vietnam (downward trend)
Unemployment rate	2% (Value in 2019)
Capital depreciation	Value in 2019
Share of public expenditures	5.9% (IMF, 2019)
Share of public investment	6.8% (IMF, 2019)
Growth rate of world GDP	Quantitative projections of the so-called Shared Socioeconomic Pathways (SSPs)
Demand for real imports of trading partners	OECD's projections
World price of imports	Grow at 1% per year
Required bank reserves ratio	Value in 2019
Price of equity for US	Average growth rate of the last 5 years
US interest rate	FED's projections

■ GDP loss with the macroeconomic model

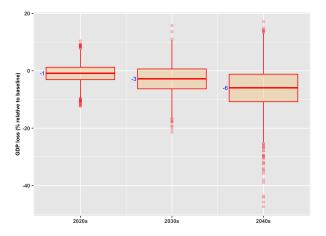


Figure: Macroeconomic damage as a percentage of GDP loss relative to baseline scenario. Damage functions (agriculture, energy, labor productivity, total factor productivity, mortality) are taken into account.

■ GDP loss with the macroeconomic model (con't)

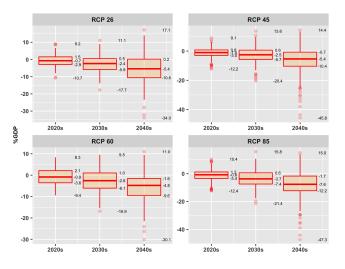


Figure: Macroeconomic damage as a percentage of GDP loss relative to baseline scenario by RCP

■ GDP loss with the macroeconomic model (con't)

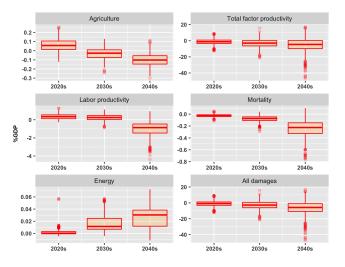


Figure: Macroeconomic damage as a percentage of GDP loss relative to baseline scenario by sector

2021

■ Macro impacts vs Direct impacts

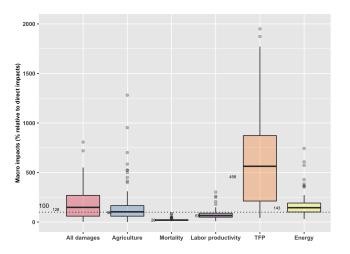


Figure: Distributions of GDP loss in the macroeconomic model compared with direct damages

Outlines

- 1 Context and Objectives
- 2 Method
- 3 The model
- 4 Direct damages
- 5 Macro impacts
- 6 Conclusion

Conclusion

- Sectoral direct impacts: 6% relative to the baseline scenario at +1 °C of warming
- Macro impacts: by 2050, between 0.7 and 10.4% under RCP 4.5 and between 1.7 and 12.2% under RCP 8.5.
- Macroeconomic impacts losses larger than direct damages by around 30%.
- A first empirical stock-flow coherent macroeconomic model of the Vietnamese economy.
- Open to incorporate further studies on specific impacts of climate change on specific sectors

Thank you for your attention!