Taxation with pollution and interjurisdictional commuting

Sophie Legras, INRAE, CESAER

International Conference on Mobility Challenges
9 décembre 2021
Introduction
Context: air pollution and commuting

- Air pollution and health impacts
 - Impact on respiratory, cardio-vascular and possibly neurodegenerative diseases on short/long term

- Road transport: important emitter of NOx, PM10, PM2.5
 - resp. 53, 17 and 19% of emissions in Ile-de-France in 2018
 - in 2008, 86% of the distance covered for daily mobility by car
Introduction

Context: fiscality and commuting

- 64% of workers commuted out of their municipality of residence in 2013 in France (75% in Ile-de-France) (RP 2013)
- Local fiscality represents around 17% of tax receipts in the EU28 and in the US
 - residential taxes
 - business taxes (CFE in France)
 - traffic-related: congestion charges (London, I66), vehicle mile traveled tax (NZ, Oregon, Utah)

⇒ Focus on fiscality among the determinants of interjurisdictional commuting
• Fiscal competition and capital mobility

• Fiscal competition and labour mobility
 • industrial productivity gap: Peralta (2007)
 • job decentralization: Gaigné et al. (2016)
 • income tax heterogeneity in US multi-State metropolitan areas: Agrawal and Hoyt (2018)
 • congestion: Ly (2019)
Introduction

Our contribution

- A tax competition model between 2 jurisdictions, asymmetric w.r.t. to productivity; with residential location given but cross-commuting allowed
 - based on Peralta (JPET 2007)

- with introduction of environmental costs of commuting
 - The incentive for the high productive jurisdiction to attract workers in order to export its tax burden is modified by the induced pollution import

- and comparison wage vs commuting tax
 - individual fiscal burden imposed by the commuting tax is location-dependent
 - higher welfare levels with commuting tax
Introduction
Outline

- The model
- The first best
- Fiscal competition
 - with wage tax
 - with commuting tax
- Concluding remarks
Model

• 2 asymmetric jurisdictions

![Diagram showing two jurisdictions with CBD1 and CBD2]

- Residential location given: \(\bar{N}_1 = \bar{N}_2 = \frac{1}{2} \)

- Job location chosen: \(N_1 + N_2 = 1 \)
 - \(N_i \) workers per jurisdiction
 - output: \(Y_i = \alpha_i N_i \) (\(\alpha_1 > \alpha_2 \))
 - wage: \(w_i = \alpha_i \)
• Utility function with i place of residence and j place of work:

$$u_{ij}(x, G_i, E_i) = w_j + W - c(|x - CBD_j|) - F_{ij}(x) + v(G_i) - E_i$$

• W: exogenous revenue
• c: unitary commuting cost
• $F_{ij}(x)$: fiscal expenditures
• G_i: local public good in jurisdiction i
• E_i: ambient pollution
Model

• 2 fiscal schemes analysed:
 • Following Peralta (2007), head (T_i) and wage (τ_i) taxes:
 \[
 F_{ij}(x) = T_i + \tau_j w_j
 \] (FS1)
 • A commuting (t_i) tax:
 • $d_i(x)$ distance travelled by household located at x in jurisdiction i
 \[
 F_{ij}(x) = T_i + t_i d_i(x) + t_j d_j(x)
 \] (FS2)
• Jurisdictions’ budget constraint :

• G_i : fixed level of local public good in jurisdiction i

\[G_i = \bar{N}T_i + N_i\tau_i w_i \] \hspace{1cm} (FS1)

\[G_i = \bar{N}T_i + \int_{x \in X} t_i d_i(x) \, dx \] \hspace{1cm} (FS2)
• Ambient pollution affecting an agent located in jurisdiction i:

$$E_i = e_i D_i(\hat{x})$$

- e_i: unit damage due to ambient pollution
- \hat{x}: location of marginal commuter indifferent between working in CBD_i or CBD_j
- $D_i(\hat{x})$: total distances travelled in jurisdiction i

$$D_2(\hat{x}) = \int_0^{\hat{x}} xdx + \int_{\hat{x}}^{\frac{1}{2}} |EC_i - x|dx = \frac{1}{16} + \hat{x}^2 - \frac{\hat{x}}{4}$$

$$D_1(\hat{x}) = \int_{-\frac{1}{2}}^{0} |EC_j - x|dx + \int_{0}^{\hat{x}} \frac{1}{4}dx = \frac{1}{16} + \frac{\hat{x}}{4}$$
Introduction

Outline

• The model
• The first best
• Fiscal competition
 • with wage tax
 • with commuting tax
• Concluding remarks
The first-best

- Benevolent policy-maker maximizes sum of utilities w.r.t. N_1, N_2, T and τ (or t), under budget constraint:

$$G_1 + G_2 = 2\bar{N}T + \tau(N_1w_1 + N_2w_2)$$ \hspace{1cm} (FS1)

$$G_1 + G_2 = 2\bar{N}T + t(\frac{1}{8} + \hat{x}^2)$$ \hspace{1cm} (FS2)

- No use of distortive taxation ($\tau^* = 0$ or $t^* = 0$) and a positive head-tax ($T^* = (G_1 + G_2)/2\bar{N}$)

- Cross-commuting from 2 to 1 as long as the wage gap is positive:

$$x^* = \frac{w_1 - w_2}{2c + e} > 0$$
• The model
• The first best
• Fiscal competition
 • with wage tax
 • with commuting tax
• Concluding remarks
Fiscal competition

• Two-stage game solved by backward induction:
 • In each jurisdiction, the local PM maximizes aggregate utility by choosing T_i and τ_i or t_i - fiscal equilibrium
 • Then, agents choose their workplace given the tax rates - commuting equilibrium

 \Rightarrow location of the marginal commuter \hat{x}

 s.t. $\Delta u = u_{ij}(\hat{x}, G_i, E_i) - u_{ii}(\hat{x}, G_i, E_i) = 0$
Tax competition: PM maximisation problem

Each jurisdiction’s PM maximises aggregate utility wrt τ_i or t_i under her budget constraint:

- Jurisdiction 1
 \[
 U_1 = \int_{-1/2}^{0} u_{11}(x, G_1, E_1) \, dx \quad \text{s.t.} \quad G_1 = \bar{N} T_1 + \tau_1 N_1(\hat{x}) w_1
 \]

- Jurisdiction 2
 \[
 U_2 = \int_{0}^{\hat{x}} u_{21}(x, G_2, E_2) \, dx + \int_{\hat{x}}^{1/2} u_{22}(x, G_2, E_2) \, dx \\
 \quad \text{s.t.} \quad G_2 = \bar{N} T_2 + \tau_2 N_2(\hat{x}) w_2
 \]
Tax competition: wage tax

- \(\tau_1 > 0 \): wages are taxed in \(J_1 \)

- 3 types of impacts of \(\tau_1 \) on \(U_1 \):
 - a wage tax effect: \(< 0\)
 - a pollution load effect: \(> 0\)
 - a head tax effect

\(\Rightarrow \) The higher the pollution damage, the higher \(\tau_1 \): pollution import counterbalances the benefits of the tax burden export
Tax competition: wage tax

- \(\tau_2 \leq 0 \): wages may be taxed or subsidized in \(J_2 \)

- 4 types of impacts of \(\tau_2 \) on \(U_2 \):
 - wage, pollution and head tax effects, sign undetermined
 - a commuting cost effect: \(< 0\)

\[\Rightarrow \] \(\tau_2 \neq 0 \) in contrast with previous literature

\[\Rightarrow \] Sign of \(\tau_2 \) depend son how the positive impacts of taxing (more cross-commuters earning higher wages, less residential fiscal pressure) compare with the negative ones (less workers in \(J_2 \) with lower wages)
Tax competition: wage tax

- Cross-commuting is reduced compared to the first-best
 ⇒ since wages are taxed in J_1, it is always less attractive for residents of J_2 to commute there compared to the first-best
 ⇒ even more so when pollution damage is high

- J_1 gains welfare, J_2 loses welfare, and aggregate welfare is reduced compared to the first-best
 ⇒ however, pollution decreases the total welfare gap, and its impact on jurisdictional welfare gaps depends on Δw
 ⇒ when Δw is high, e increases the welfare gaps since the incentive to cross-commute, hence the pollution impact, is high
Tax competition: commuting tax

- $t_1 > 0$: commuting is taxed in J_1

- 3 types of impacts of τ_1 on U_1:
 - a commuting tax effect: < 0
 - a pollution load effect: > 0
 - a head tax effect: > 0

\Rightarrow The higher the pollution damage, the higher t_1: pollution import counterbalances the benefits of the tax burden export
Tax competition : commuting tax

- $\tau_2 < 0$: commuting is subsidized in J_2

- 4 types of impacts of τ_2 on U_2 :
 - commuting, pollution and head tax effects, sign undetermined
 - a commuting cost effect
 - aggregate impact < 0
Tax competition: commuting tax

- Cross-commuting is reduced compared to the first-best, but higher than with wage tax
 - commuting fiscal pressure depends on precise residential location (x, rather than J_1 or J_2)
 - incentive to x-commute since taxed in J_1 and subsidized in J_2

- J_1 gains welfare, J_2 loses welfare, and aggregate welfare is reduced compared to the first-best
 - but all welfares are higher than with wage tax
Introduction

Outline

• The model
• The first best
• Fiscal competition
 • with wage tax
 • with commuting tax
• Concluding remarks
Concluding remarks

- Fiscal competition in a spatial context when pollution matters
 - tradeoff between fiscal burden export and pollution import \((J_1)\)
 - tradeoff between cross-commuters and resident-workers’ welfares \((J_2)\)

- Wage tax vs commuting tax
 - commuting tax increases incentive for cross-commuting
 - aggregate and jurisdictional welfares higher with commuting rather than wage tax
Concluding remarks

• Spatial framework rather coarse
 • economic geography framework and environmental fiscal competition: work in progress with R. Gaté and T. Ly

• Role of citizens’ and policy-makers perception of pollution
 • perceptions aligned?
Thank you for your attention